Merge pull request #158 from jeremy43:improved_gaussian_subsample

PiperOrigin-RevId: 377344012
This commit is contained in:
A. Unique TensorFlower 2021-06-03 12:13:28 -07:00
commit 385fefc85e
2 changed files with 240 additions and 5 deletions

View file

@ -47,6 +47,7 @@ import numpy as np
from scipy import special
import six
########################
# LOG-SPACE ARITHMETIC #
########################
@ -77,6 +78,21 @@ def _log_sub(logx, logy):
return logx
def _log_sub_sign(logx, logy):
"""Returns log(exp(logx)-exp(logy)) and its sign."""
if logx > logy:
s = True
mag = logx + np.log(1 - np.exp(logy - logx))
elif logx < logy:
s = False
mag = logy + np.log(1 - np.exp(logx - logy))
else:
s = True
mag = -np.inf
return s, mag
def _log_print(logx):
"""Pretty print."""
if logx < math.log(sys.float_info.max):
@ -259,7 +275,7 @@ def _compute_eps(orders, rdp, delta):
# This bound is not numerically stable as alpha->1.
# Thus we have a min value of alpha.
# The bound is also not useful for small alpha, so doesn't matter.
eps = r + math.log1p(-1/a) - math.log(delta * a) / (a - 1)
eps = r + math.log1p(-1 / a) - math.log(delta * a) / (a - 1)
else:
# In this case we can't do anything. E.g., asking for delta = 0.
eps = np.inf
@ -269,6 +285,70 @@ def _compute_eps(orders, rdp, delta):
return max(0, eps_vec[idx_opt]), orders_vec[idx_opt]
def _stable_inplace_diff_in_log(vec, signs, n=-1):
"""Replaces the first n-1 dims of vec with the log of abs difference operator.
Args:
vec: numpy array of floats with size larger than 'n'
signs: Optional numpy array of bools with the same size as vec in case one
needs to compute partial differences vec and signs jointly describe a
vector of real numbers' sign and abs in log scale.
n: Optonal upper bound on number of differences to compute. If negative, all
differences are computed.
Returns:
The first n-1 dimension of vec and signs will store the log-abs and sign of
the difference.
Raises:
ValueError: If input is malformed.
"""
assert vec.shape == signs.shape
if n < 0:
n = np.max(vec.shape) - 1
else:
assert np.max(vec.shape) >= n + 1
for j in range(0, n, 1):
if signs[j] == signs[j + 1]: # When the signs are the same
# if the signs are both positive, then we can just use the standard one
signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j])
# otherwise, we do that but toggle the sign
if not signs[j + 1]:
signs[j] = ~signs[j]
else: # When the signs are different.
vec[j] = _log_add(vec[j], vec[j + 1])
signs[j] = signs[j + 1]
def _get_forward_diffs(fun, n):
"""Computes up to nth order forward difference evaluated at 0.
See Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf
Args:
fun: Function to compute forward differences of.
n: Number of differences to compute.
Returns:
Pair (deltas, signs_deltas) of the log deltas and their signs.
"""
func_vec = np.zeros(n + 3)
signs_func_vec = np.ones(n + 3, dtype=bool)
# ith coordinate of deltas stores log(abs(ith order discrete derivative))
deltas = np.zeros(n + 2)
signs_deltas = np.zeros(n + 2, dtype=bool)
for i in range(1, n + 3, 1):
func_vec[i] = fun(1.0 * (i - 1))
for i in range(0, n + 2, 1):
# Diff in log scale
_stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i)
deltas[i] = func_vec[0]
signs_deltas[i] = signs_func_vec[0]
return deltas, signs_deltas
def _compute_rdp(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
@ -314,6 +394,149 @@ def compute_rdp(q, noise_multiplier, steps, orders):
return rdp * steps
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
"""Compute RDP of Gaussian Mechanism using sampling without replacement.
This function applies to the following schemes:
1. Sampling w/o replacement: Sample a uniformly random subset of size m = q*n.
2. ``Replace one data point'' version of differential privacy, i.e., n is
considered public information.
Reference: Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf (A strengthened
version applies subsampled-Gaussian mechanism)
- Wang, Balle, Kasiviswanathan. "Subsampled Renyi Differential Privacy and
Analytical Moments Accountant." AISTATS'2019.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
to the l2-sensitivity of the function to which it is added.
steps: The number of steps.
orders: An array (or a scalar) of RDP orders.
Returns:
The RDPs at all orders, can be np.inf.
"""
if np.isscalar(orders):
rdp = _compute_rdp_sample_without_replacement_scalar(
q, noise_multiplier, orders)
else:
rdp = np.array([
_compute_rdp_sample_without_replacement_scalar(q, noise_multiplier,
order)
for order in orders
])
return rdp * steps
def _compute_rdp_sample_without_replacement_scalar(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
assert (q <= 1) and (q >= 0) and (alpha >= 1)
if q == 0:
return 0
if q == 1.:
return alpha / (2 * sigma**2)
if np.isinf(alpha):
return np.inf
if float(alpha).is_integer():
return _compute_rdp_sample_without_replacement_int(q, sigma, alpha) / (
alpha - 1)
else:
# When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate
# the CGF and obtain an upper bound
alpha_f = math.floor(alpha)
alpha_c = math.ceil(alpha)
x = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_f)
y = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_c)
t = alpha - alpha_f
return ((1 - t) * x + t * y) / (alpha - 1)
def _compute_rdp_sample_without_replacement_int(q, sigma, alpha):
"""Compute log(A_alpha) for integer alpha, subsampling without replacement.
When alpha is smaller than max_alpha, compute the bound Theorem 27 exactly,
otherwise compute the bound with Stirling approximation.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
max_alpha = 256
assert isinstance(alpha, six.integer_types)
if np.isinf(alpha):
return np.inf
elif alpha == 1:
return 0
def cgf(x):
# Return rdp(x+1)*x, the rdp of Gaussian mechanism is alpha/(2*sigma**2)
return x * 1.0 * (x + 1) / (2.0 * sigma**2)
def func(x):
# Return the rdp of Gaussian mechanism
return 1.0 * x / (2.0 * sigma**2)
# Initialize with 1 in the log space.
log_a = 0
# Calculates the log term when alpha = 2
log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0)))
if alpha <= max_alpha:
# We need forward differences of exp(cgf)
# The following line is the numerically stable way of implementing it.
# The output is in polar form with logarithmic magnitude
deltas, _ = _get_forward_diffs(cgf, alpha)
# Compute the bound exactly requires book keeping of O(alpha**2)
for i in range(2, alpha + 1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
np.log(4) + log_f2m1,
func(2.0) + np.log(2))
elif i > 2:
delta_lo = deltas[int(2 * np.floor(i / 2.0)) - 1]
delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1]
s = np.log(4) + 0.5 * (delta_lo + delta_hi)
s = np.minimum(s, np.log(2) + cgf(i - 1))
s += i * np.log(q) + _log_comb(alpha, i)
log_a = _log_add(log_a, s)
return float(log_a)
else:
# Compute the bound with stirling approximation. Everything is O(x) now.
for i in range(2, alpha + 1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
np.log(4) + log_f2m1,
func(2.0) + np.log(2))
else:
s = np.log(2) + cgf(i - 1) + i * np.log(q) + _log_comb(alpha, i)
log_a = _log_add(log_a, s)
return log_a
def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
steps_list, orders):
"""Computes RDP of Heteregoneous Applications of Sampled Gaussian Mechanisms.

View file

@ -29,12 +29,13 @@ from mpmath import log
from mpmath import npdf
from mpmath import quad
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.analysis import rdp_accountant
class TestGaussianMoments(parameterized.TestCase):
class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
#################################
# HELPER FUNCTIONS: #
# Exact computations using #
@ -102,12 +103,23 @@ class TestGaussianMoments(parameterized.TestCase):
rdp_scalar = rdp_accountant.compute_rdp(0.1, 2, 10, 5)
self.assertAlmostEqual(rdp_scalar, 0.07737, places=5)
def test_compute_rdp_sequence_without_replacement(self):
rdp_vec = rdp_accountant.compute_rdp_sample_without_replacement(
0.01, 2.5, 50, [1.001, 1.5, 2.5, 5, 50, 100, 256, 512, 1024, np.inf])
self.assertAllClose(
rdp_vec, [
3.4701e-3, 3.4701e-3, 4.6386e-3, 8.7634e-3, 9.8474e-2, 1.6776e2,
7.9297e2, 1.8174e3, 3.8656e3, np.inf
],
rtol=1e-4)
def test_compute_rdp_sequence(self):
rdp_vec = rdp_accountant.compute_rdp(0.01, 2.5, 50,
[1.5, 2.5, 5, 50, 100, np.inf])
self.assertSequenceAlmostEqual(
rdp_vec, [0.00065, 0.001085, 0.00218075, 0.023846, 167.416307, np.inf],
delta=1e-5)
self.assertAllClose(
rdp_vec,
[6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02, np.inf],
rtol=1e-4)
params = ({'q': 1e-7, 'sigma': .1, 'order': 1.01},
{'q': 1e-6, 'sigma': .1, 'order': 256},