DpEventBuilder tracks the order of events, instead of just maintaining a multiset.
Existing approaches to accounting are generally agnostic to the order of composition, even when the composition is adaptive. But in principle it is possible for an accountant to require such information, so we had better not throw it away. Note that `ComposedDpEvent` is now treated like any other `DpEvent`, not taken apart and the components added separately as it was. The reason for this is that a common pattern may be to compose a series of `ComposedDpEvent`s that have identical substructure. We want the `DpEventBuilder` to represent this as a single `SelfComposedDpEvent`, not a linearly-growing `ComposedDpEvent`. PiperOrigin-RevId: 398359519
This commit is contained in:
parent
67a7096d52
commit
39c75f62af
2 changed files with 32 additions and 31 deletions
|
@ -13,8 +13,6 @@
|
|||
# limitations under the License.
|
||||
"""Builder class for ComposedDpEvent."""
|
||||
|
||||
import collections
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
|
||||
|
||||
|
@ -28,7 +26,8 @@ class DpEventBuilder(object):
|
|||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._events = collections.OrderedDict()
|
||||
# A list of (event, count) pairs.
|
||||
self._event_counts = []
|
||||
self._composed_event = None
|
||||
|
||||
def compose(self, event: dp_event.DpEvent, count: int = 1):
|
||||
|
@ -46,33 +45,32 @@ class DpEventBuilder(object):
|
|||
if count < 1:
|
||||
raise ValueError(f'`count` must be positive. Found {count}.')
|
||||
|
||||
if isinstance(event, dp_event.ComposedDpEvent):
|
||||
for composed_event in event.events:
|
||||
self.compose(composed_event, count)
|
||||
if isinstance(event, dp_event.NoOpDpEvent):
|
||||
return
|
||||
elif isinstance(event, dp_event.SelfComposedDpEvent):
|
||||
self.compose(event.event, count * event.count)
|
||||
elif isinstance(event, dp_event.NoOpDpEvent):
|
||||
return
|
||||
else:
|
||||
current_count = self._events.get(event, 0)
|
||||
self._events[event] = current_count + count
|
||||
if self._event_counts and self._event_counts[-1][0] == event:
|
||||
new_event_count = (event, self._event_counts[-1][1] + count)
|
||||
self._event_counts[-1] = new_event_count
|
||||
else:
|
||||
self._event_counts.append((event, count))
|
||||
self._composed_event = None
|
||||
|
||||
def build(self) -> dp_event.DpEvent:
|
||||
"""Builds and returns the composed DpEvent represented by the builder."""
|
||||
if not self._composed_event:
|
||||
self_composed_events = []
|
||||
for event, count in self._events.items():
|
||||
events = []
|
||||
for event, count in self._event_counts:
|
||||
if count == 1:
|
||||
self_composed_events.append(event)
|
||||
events.append(event)
|
||||
else:
|
||||
self_composed_events.append(
|
||||
dp_event.SelfComposedDpEvent(event, count))
|
||||
if not self_composed_events:
|
||||
events.append(dp_event.SelfComposedDpEvent(event, count))
|
||||
if not events:
|
||||
self._composed_event = dp_event.NoOpDpEvent()
|
||||
elif len(self_composed_events) == 1:
|
||||
self._composed_event = self_composed_events[0]
|
||||
elif len(events) == 1:
|
||||
self._composed_event = events[0]
|
||||
else:
|
||||
self._composed_event = dp_event.ComposedDpEvent(self_composed_events)
|
||||
self._composed_event = dp_event.ComposedDpEvent(events)
|
||||
|
||||
return self._composed_event
|
||||
|
|
|
@ -20,8 +20,6 @@ from tensorflow_privacy.privacy.analysis import dp_event_builder
|
|||
_gaussian_event = dp_event.GaussianDpEvent(1.0)
|
||||
_poisson_event = dp_event.PoissonSampledDpEvent(_gaussian_event, 0.1)
|
||||
_self_composed_event = dp_event.SelfComposedDpEvent(_gaussian_event, 3)
|
||||
_composed_event = dp_event.ComposedDpEvent(
|
||||
[_self_composed_event, _poisson_event])
|
||||
|
||||
|
||||
class DpEventBuilderTest(absltest.TestCase):
|
||||
|
@ -50,22 +48,27 @@ class DpEventBuilderTest(absltest.TestCase):
|
|||
|
||||
def test_compose_heterogenous(self):
|
||||
builder = dp_event_builder.DpEventBuilder()
|
||||
builder.compose(_poisson_event)
|
||||
builder.compose(_gaussian_event)
|
||||
builder.compose(_poisson_event)
|
||||
builder.compose(_gaussian_event, 2)
|
||||
self.assertEqual(_composed_event, builder.build())
|
||||
builder.compose(_poisson_event)
|
||||
expected_event = dp_event.ComposedDpEvent(
|
||||
[_poisson_event, _self_composed_event, _poisson_event])
|
||||
self.assertEqual(expected_event, builder.build())
|
||||
|
||||
def test_compose_complex(self):
|
||||
def test_compose_composed(self):
|
||||
builder = dp_event_builder.DpEventBuilder()
|
||||
builder.compose(_gaussian_event, 2)
|
||||
builder.compose(_composed_event)
|
||||
composed_event = dp_event.ComposedDpEvent(
|
||||
[_gaussian_event, _poisson_event, _self_composed_event])
|
||||
builder.compose(_gaussian_event)
|
||||
builder.compose(composed_event)
|
||||
builder.compose(composed_event, 2)
|
||||
builder.compose(_poisson_event)
|
||||
builder.compose(_poisson_event)
|
||||
builder.compose(_composed_event, 2)
|
||||
|
||||
expected_event = dp_event.ComposedDpEvent([
|
||||
dp_event.SelfComposedDpEvent(_gaussian_event, 11),
|
||||
dp_event.SelfComposedDpEvent(_poisson_event, 4)
|
||||
])
|
||||
_gaussian_event,
|
||||
dp_event.SelfComposedDpEvent(composed_event, 3),
|
||||
dp_event.SelfComposedDpEvent(_poisson_event, 2)])
|
||||
self.assertEqual(expected_event, builder.build())
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue