parent
5ee12803f3
commit
4487099296
1 changed files with 6 additions and 6 deletions
|
@ -60,7 +60,7 @@ def cnn_model_fn(features, labels, mode):
|
|||
logits = tf.keras.layers.Dense(10, kernel_initializer='he_normal').apply(y)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.softmax_cross_entropy_with_logits_v2(
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits)
|
||||
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
@ -99,7 +99,7 @@ def cnn_model_fn(features, labels, mode):
|
|||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=tf.argmax(labels, axis=1),
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
|
@ -116,15 +116,15 @@ def load_mnist():
|
|||
train_data = np.array(train_data, dtype=np.float32) / 255
|
||||
test_data = np.array(test_data, dtype=np.float32) / 255
|
||||
|
||||
train_labels = tf.keras.utils.to_categorical(train_labels)
|
||||
test_labels = tf.keras.utils.to_categorical(test_labels)
|
||||
train_labels = np.array(train_labels, dtype=np.int32)
|
||||
test_labels = np.array(test_labels, dtype=np.int32)
|
||||
|
||||
assert train_data.min() == 0.
|
||||
assert train_data.max() == 1.
|
||||
assert test_data.min() == 0.
|
||||
assert test_data.max() == 1.
|
||||
assert train_labels.shape[1] == 10
|
||||
assert test_labels.shape[1] == 10
|
||||
assert len(train_labels.shape) == 1
|
||||
assert len(test_labels.shape) == 1
|
||||
|
||||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
|
Loading…
Reference in a new issue