Adding privacy analysis to the Logistic Regression for MNIST tutorial.
PiperOrigin-RevId: 254815428
This commit is contained in:
parent
2b97c7c735
commit
45bcb3a0e4
2 changed files with 92 additions and 57 deletions
|
@ -20,6 +20,10 @@ Here is a list of all the tutorials included:
|
|||
* `mnist_dpsgd_tutorial_keras.py`: learn a convolutional neural network on MNIST
|
||||
with differential privacy using tf.Keras.
|
||||
|
||||
* `mnist_lr_tutorial.py`: learn a differentially private logistic regression
|
||||
model on MNIST. The model illustrates application of the
|
||||
"amplification-by-iteration" analysis (https://arxiv.org/abs/1808.06651).
|
||||
|
||||
The rest of this README describes the different parameters used to configure
|
||||
DP-SGD as well as expected outputs for the `mnist_dpsgd_tutorial.py` tutorial.
|
||||
|
||||
|
|
|
@ -11,11 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""DP Logistic Regression on MNIST.
|
||||
|
||||
DP Logistic Regression on MNIST with support for privacy-by-iteration analysis.
|
||||
Feldman, Vitaly, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
|
||||
Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
|
||||
"Privacy amplification by iteration."
|
||||
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
|
||||
pp. 521-532. IEEE, 2018.
|
||||
|
@ -36,6 +35,8 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
|
@ -45,32 +46,30 @@ else:
|
|||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.02,
|
||||
flags.DEFINE_float('noise_multiplier', 0.05,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 1, 'Batch size')
|
||||
flags.DEFINE_integer('batch_size', 5, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 5, 'Number of epochs')
|
||||
flags.DEFINE_integer('microbatches', 1, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_float('regularizer', 0, 'L2 regularizer coefficient')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
flags.DEFINE_float('data_l2_norm', 8,
|
||||
'Bound on the L2 norm of normalized data.')
|
||||
flags.DEFINE_float('data_l2_norm', 8, 'Bound on the L2 norm of normalized data')
|
||||
|
||||
|
||||
def lr_model_fn(features, labels, mode, nclasses, dim):
|
||||
"""Model function for logistic regression."""
|
||||
input_layer = tf.reshape(features['x'], tuple([-1]) + dim)
|
||||
|
||||
logits = tf.layers.dense(inputs=input_layer,
|
||||
logits = tf.layers.dense(
|
||||
inputs=input_layer,
|
||||
units=nclasses,
|
||||
kernel_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer),
|
||||
bias_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer)
|
||||
)
|
||||
scale=FLAGS.regularizer))
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
|
@ -80,18 +79,15 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
|
|||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
# The loss function is L-Lipschitz with L = sqrt(2*(||x||^2 + 1)) where
|
||||
# ||x|| is the norm of the data.
|
||||
# We don't use microbatches (thus speeding up computation), since no
|
||||
# clipping is necessary due to data normalization.
|
||||
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
||||
l2_norm_clip=math.sqrt(2 * (FLAGS.data_l2_norm**2 + 1)),
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
num_microbatches=1,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
|
@ -103,21 +99,18 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
|
|||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
train_op=train_op)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def normalize_data(data, data_l2_norm):
|
||||
|
@ -159,14 +152,50 @@ def load_mnist(data_l2_norm=float('inf')):
|
|||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
||||
def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
|
||||
"""Tabulating position-dependent privacy guarantees."""
|
||||
if noise_multiplier == 0:
|
||||
print('No differential privacy (additive noise is 0).')
|
||||
return
|
||||
|
||||
print('In the conditions of Theorem 34 (https://arxiv.org/abs/1808.06651) '
|
||||
'the training procedure results in the following privacy guarantees.')
|
||||
|
||||
print('Out of the total of {} samples:'.format(samples))
|
||||
|
||||
steps_per_epoch = samples // batch_size
|
||||
orders = np.concatenate(
|
||||
[np.linspace(2, 20, num=181),
|
||||
np.linspace(20, 100, num=81)])
|
||||
delta = 1e-5
|
||||
for p in (.5, .9, .99):
|
||||
steps = math.ceil(steps_per_epoch * p) # Steps in the last epoch.
|
||||
coef = 2 * (noise_multiplier * batch_size)**-2 * (
|
||||
# Accounting for privacy loss
|
||||
(epochs - 1) / steps_per_epoch + # ... from all-but-last epochs
|
||||
1 / (steps_per_epoch - steps + 1)) # ... due to the last epoch
|
||||
# Using RDP accountant to compute eps. Doing computation analytically is
|
||||
# an option.
|
||||
rdp = [order * coef for order in orders]
|
||||
eps, _, _ = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(
|
||||
p * 100, eps, delta))
|
||||
|
||||
# Compute privacy guarantees for the Sampled Gaussian Mechanism.
|
||||
rdp_sgm = compute_rdp(batch_size / samples, noise_multiplier,
|
||||
epochs * steps_per_epoch, orders)
|
||||
eps_sgm, _, _ = get_privacy_spent(orders, rdp_sgm, target_delta=delta)
|
||||
print('By comparison, DP-SGD analysis for training done with the same '
|
||||
'parameters and random shuffling in each epoch guarantees '
|
||||
'({:.2f}, {})-DP for all samples.'.format(eps_sgm, delta))
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
||||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||
if FLAGS.data_l2_norm <= 0:
|
||||
raise ValueError('FLAGS.data_l2_norm needs to be positive.')
|
||||
if FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
|
||||
raise ValueError('The amplification by iteration analysis requires'
|
||||
raise ValueError('data_l2_norm must be positive.')
|
||||
if FLAGS.dpsgd and FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
|
||||
raise ValueError('The amplification-by-iteration analysis requires'
|
||||
'learning_rate <= 2 / beta, where beta is the smoothness'
|
||||
'of the loss function and is upper bounded by ||x||^2 / 4'
|
||||
'with ||x|| being the largest L2 norm of the samples.')
|
||||
|
@ -178,15 +207,12 @@ def main(unused_argv):
|
|||
train_data, train_labels, test_data, test_labels = load_mnist(
|
||||
data_l2_norm=FLAGS.data_l2_norm)
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
# Instantiate tf.Estimator.
|
||||
# pylint: disable=g-long-lambda
|
||||
model_fn = lambda features, labels, mode: lr_model_fn(features, labels, mode,
|
||||
nclasses=10,
|
||||
dim=train_data.shape[1:]
|
||||
)
|
||||
model_fn = lambda features, labels, mode: lr_model_fn(
|
||||
features, labels, mode, nclasses=10, dim=train_data.shape[1:])
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=FLAGS.model_dir)
|
||||
model_fn=model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
# To analyze the per-user privacy loss, we keep the same orders of samples in
|
||||
|
@ -198,22 +224,27 @@ def main(unused_argv):
|
|||
num_epochs=FLAGS.epochs,
|
||||
shuffle=False)
|
||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data},
|
||||
y=test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Train the model
|
||||
steps_per_epoch = train_data.shape[0] // FLAGS.batch_size
|
||||
mnist_classifier.train(input_fn=train_input_fn,
|
||||
steps=steps_per_epoch * FLAGS.epochs)
|
||||
# Train the model.
|
||||
num_samples = train_data.shape[0]
|
||||
steps_per_epoch = num_samples // FLAGS.batch_size
|
||||
|
||||
# Evaluate the model and print results
|
||||
mnist_classifier.train(
|
||||
input_fn=train_input_fn, steps=steps_per_epoch * FLAGS.epochs)
|
||||
|
||||
# Evaluate the model and print results.
|
||||
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
print('Test accuracy after %d epochs is: %.3f' % (FLAGS.epochs,
|
||||
test_accuracy))
|
||||
print('Test accuracy after {} epochs is: {:.2f}'.format(
|
||||
FLAGS.epochs, eval_results['accuracy']))
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
print_privacy_guarantees(
|
||||
epochs=FLAGS.epochs,
|
||||
batch_size=FLAGS.batch_size,
|
||||
samples=num_samples,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
Loading…
Reference in a new issue