pylint edits

This commit is contained in:
npapernot 2019-03-18 16:42:59 +00:00
parent ec2204ac97
commit 4784b0f31e

View file

@ -100,14 +100,14 @@ def image_whitening(data):
nb_pixels = np.shape(data)[1] * np.shape(data)[2] * np.shape(data)[3]
# Subtract mean
mean = np.mean(data, axis=(1,2,3))
mean = np.mean(data, axis=(1, 2, 3))
ones = np.ones(np.shape(data)[1:4], dtype=np.float32)
for i in xrange(len(data)):
data[i, :, :, :] -= mean[i] * ones
# Compute adjusted standard variance
adj_std_var = np.maximum(np.ones(len(data), dtype=np.float32) / math.sqrt(nb_pixels), np.std(data, axis=(1,2,3))) #NOLINT(long-line)
adj_std_var = np.maximum(np.ones(len(data), dtype=np.float32) / math.sqrt(nb_pixels), np.std(data, axis=(1, 2, 3))) # pylint: disable=line-too-long
# Divide image
for i in xrange(len(data)):
@ -148,15 +148,15 @@ def extract_svhn(local_url):
return data, labels
def unpickle_cifar_dic(file):
def unpickle_cifar_dic(file): # pylint: disable=redefined-builtin
"""
Helper function: unpickles a dictionary (used for loading CIFAR)
:param file: filename of the pickle
:return: tuple of (images, labels)
"""
fo = open(file, 'rb')
data_dict = pickle.load(fo)
fo.close()
file_obj = open(file, 'rb')
data_dict = pickle.load(file_obj)
file_obj.close()
return data_dict['data'], data_dict['labels']
@ -176,8 +176,8 @@ def extract_cifar10(local_url, data_dir):
'/cifar10_test_labels.npy']
all_preprocessed = True
for file in preprocessed_files:
if not tf.gfile.Exists(data_dir + file):
for file_name in preprocessed_files:
if not tf.gfile.Exists(data_dir + file_name):
all_preprocessed = False
break
@ -197,7 +197,7 @@ def extract_cifar10(local_url, data_dir):
else:
# Do everything from scratch
# Define lists of all files we should extract
train_files = ["data_batch_" + str(i) for i in xrange(1,6)]
train_files = ["data_batch_" + str(i) for i in xrange(1, 6)]
test_file = ["test_batch"]
cifar10_files = train_files + test_file
@ -227,7 +227,7 @@ def extract_cifar10(local_url, data_dir):
labels.append(labels_tmp)
# Convert to numpy arrays and reshape in the expected format
train_data = np.asarray(images, dtype=np.float32).reshape((50000,3,32,32))
train_data = np.asarray(images, dtype=np.float32).reshape((50000, 3, 32, 32))
train_data = np.swapaxes(train_data, 1, 3)
train_labels = np.asarray(labels, dtype=np.int32).reshape(50000)
@ -242,7 +242,7 @@ def extract_cifar10(local_url, data_dir):
test_data, test_images = unpickle_cifar_dic(filename)
# Convert to numpy arrays and reshape in the expected format
test_data = np.asarray(test_data,dtype=np.float32).reshape((10000,3,32,32))
test_data = np.asarray(test_data, dtype=np.float32).reshape((10000, 3, 32, 32))
test_data = np.swapaxes(test_data, 1, 3)
test_labels = np.asarray(test_images, dtype=np.int32).reshape(10000)
@ -332,7 +332,7 @@ def ld_svhn(extended=False, test_only=False):
return train_data, train_labels, test_data, test_labels
else:
# Return training and extended training data separately
return train_data,train_labels, test_data,test_labels, ext_data,ext_labels
return train_data, train_labels, test_data, test_labels, ext_data, ext_labels
def ld_cifar10(test_only=False):
@ -377,7 +377,7 @@ def ld_mnist(test_only=False):
'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
]
]
# Maybe download data and retrieve local storage urls
local_urls = maybe_download(file_urls, FLAGS.data_dir)