parent
38fe4aa984
commit
4cb0a11c4b
5 changed files with 0 additions and 480 deletions
|
@ -16,7 +16,6 @@ py_library(
|
|||
deps = [
|
||||
":version",
|
||||
"//tensorflow_privacy/privacy/analysis:compute_dp_sgd_privacy_lib",
|
||||
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//tensorflow_privacy/privacy/analysis:tree_aggregation_accountant",
|
||||
"//tensorflow_privacy/privacy/dp_query",
|
||||
"//tensorflow_privacy/privacy/dp_query:discrete_gaussian_query",
|
||||
|
|
|
@ -27,9 +27,6 @@ else:
|
|||
|
||||
# Analysis
|
||||
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_heterogeneous_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.analysis.tree_aggregation_accountant import compute_rdp_tree_restart
|
||||
from tensorflow_privacy.privacy.analysis.tree_aggregation_accountant import compute_rdp_single_tree
|
||||
from tensorflow_privacy.privacy.analysis.tree_aggregation_accountant import compute_zcdp_single_tree
|
||||
|
|
|
@ -56,23 +56,6 @@ py_library(
|
|||
srcs = ["gdp_accountant.py"],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "rdp_accountant",
|
||||
srcs = ["rdp_accountant.py"],
|
||||
srcs_version = "PY3",
|
||||
visibility = ["//visibility:public"],
|
||||
deps = ["@com_google_differential_py//dp_accounting:accounting"],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "rdp_accountant_test",
|
||||
size = "small",
|
||||
srcs = ["rdp_accountant_test.py"],
|
||||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [":rdp_accountant"],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "tensor_buffer",
|
||||
srcs = ["tensor_buffer.py"],
|
||||
|
|
|
@ -1,202 +0,0 @@
|
|||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""(Deprecated) RDP analysis of the Sampled Gaussian Mechanism.
|
||||
|
||||
The functions in this package have been superseded by more general accounting
|
||||
mechanisms in Google's `differential_privacy` package. These functions may at
|
||||
some future date be removed.
|
||||
|
||||
Functionality for computing Renyi differential privacy (RDP) of an additive
|
||||
Sampled Gaussian Mechanism (SGM). Its public interface consists of two methods:
|
||||
compute_rdp(q, noise_multiplier, T, orders) computes RDP for SGM iterated
|
||||
T times.
|
||||
get_privacy_spent(orders, rdp, target_eps, target_delta) computes delta
|
||||
(or eps) given RDP at multiple orders and
|
||||
a target value for eps (or delta).
|
||||
|
||||
Example use:
|
||||
|
||||
Suppose that we have run an SGM applied to a function with l2-sensitivity 1.
|
||||
Its parameters are given as a list of tuples (q1, sigma1, T1), ...,
|
||||
(qk, sigma_k, Tk), and we wish to compute eps for a given delta.
|
||||
The example code would be:
|
||||
|
||||
max_order = 32
|
||||
orders = range(2, max_order + 1)
|
||||
rdp = np.zeros_like(orders, dtype=float)
|
||||
for q, sigma, T in parameters:
|
||||
rdp += rdp_accountant.compute_rdp(q, sigma, T, orders)
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta)
|
||||
"""
|
||||
|
||||
import dp_accounting
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _compute_rdp_from_event(orders, event, count):
|
||||
"""Computes RDP from a DpEvent using RdpAccountant.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
event: A DpEvent to compute the RDP of.
|
||||
count: The number of self-compositions.
|
||||
|
||||
Returns:
|
||||
The RDP at all orders. Can be `np.inf`.
|
||||
"""
|
||||
orders_vec = np.atleast_1d(orders)
|
||||
|
||||
if isinstance(event, dp_accounting.SampledWithoutReplacementDpEvent):
|
||||
neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_ONE
|
||||
elif isinstance(event, dp_accounting.SingleEpochTreeAggregationDpEvent):
|
||||
neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_SPECIAL
|
||||
else:
|
||||
neighboring_relation = dp_accounting.NeighboringRelation.ADD_OR_REMOVE_ONE
|
||||
|
||||
accountant = dp_accounting.rdp.RdpAccountant(orders_vec, neighboring_relation)
|
||||
accountant.compose(event, count)
|
||||
rdp = accountant._rdp # pylint: disable=protected-access
|
||||
|
||||
if np.isscalar(orders):
|
||||
return rdp[0]
|
||||
else:
|
||||
return rdp
|
||||
|
||||
|
||||
def compute_rdp(q, noise_multiplier, steps, orders):
|
||||
"""(Deprecated) Computes RDP of the Sampled Gaussian Mechanism.
|
||||
|
||||
This function has been superseded by more general accounting mechanisms in
|
||||
Google's `differential_privacy` package. It may at some future date be
|
||||
removed.
|
||||
|
||||
Args:
|
||||
q: The sampling rate.
|
||||
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
||||
to the l2-sensitivity of the function to which it is added.
|
||||
steps: The number of steps.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders. Can be `np.inf`.
|
||||
"""
|
||||
event = dp_accounting.PoissonSampledDpEvent(
|
||||
q, dp_accounting.GaussianDpEvent(noise_multiplier))
|
||||
|
||||
return _compute_rdp_from_event(orders, event, steps)
|
||||
|
||||
|
||||
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
|
||||
"""(Deprecated) Compute RDP of Gaussian Mechanism sampling w/o replacement.
|
||||
|
||||
This function has been superseded by more general accounting mechanisms in
|
||||
Google's `differential_privacy` package. It may at some future date be
|
||||
removed.
|
||||
|
||||
This function applies to the following schemes:
|
||||
1. Sampling w/o replacement: Sample a uniformly random subset of size m = q*n.
|
||||
2. ``Replace one data point'' version of differential privacy, i.e., n is
|
||||
considered public information.
|
||||
|
||||
Reference: Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf (A strengthened
|
||||
version applies subsampled-Gaussian mechanism)
|
||||
- Wang, Balle, Kasiviswanathan. "Subsampled Renyi Differential Privacy and
|
||||
Analytical Moments Accountant." AISTATS'2019.
|
||||
|
||||
Args:
|
||||
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
||||
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
||||
to the l2-sensitivity of the function to which it is added.
|
||||
steps: The number of steps.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders, can be np.inf.
|
||||
"""
|
||||
event = dp_accounting.SampledWithoutReplacementDpEvent(
|
||||
1, q, dp_accounting.GaussianDpEvent(noise_multiplier))
|
||||
|
||||
return _compute_rdp_from_event(orders, event, steps)
|
||||
|
||||
|
||||
def compute_heterogeneous_rdp(sampling_probabilities, noise_multipliers,
|
||||
steps_list, orders):
|
||||
"""(Deprecated) Computes RDP of Heteregoneous Sampled Gaussian Mechanisms.
|
||||
|
||||
This function has been superseded by more general accounting mechanisms in
|
||||
Google's `differential_privacy` package. It may at some future date be
|
||||
removed.
|
||||
|
||||
Args:
|
||||
sampling_probabilities: A list containing the sampling rates.
|
||||
noise_multipliers: A list containing the noise multipliers: the ratio of the
|
||||
standard deviation of the Gaussian noise to the l2-sensitivity of the
|
||||
function to which it is added.
|
||||
steps_list: A list containing the number of steps at each
|
||||
`sampling_probability` and `noise_multiplier`.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders. Can be `np.inf`.
|
||||
"""
|
||||
assert len(sampling_probabilities) == len(noise_multipliers)
|
||||
|
||||
rdp = 0
|
||||
for q, noise_multiplier, steps in zip(sampling_probabilities,
|
||||
noise_multipliers, steps_list):
|
||||
rdp += compute_rdp(q, noise_multiplier, steps, orders)
|
||||
|
||||
return rdp
|
||||
|
||||
|
||||
def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
|
||||
"""(Deprecated) Computes delta or eps from RDP values.
|
||||
|
||||
This function has been superseded by more general accounting mechanisms in
|
||||
Google's `differential_privacy` package. It may at some future date be
|
||||
removed.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
rdp: An array of RDP values. Must be of the same length as the orders list.
|
||||
target_eps: If not `None`, the epsilon for which we compute the
|
||||
corresponding delta.
|
||||
target_delta: If not `None`, the delta for which we compute the
|
||||
corresponding epsilon. Exactly one of `target_eps` and `target_delta` must
|
||||
be `None`.
|
||||
|
||||
Returns:
|
||||
A tuple of epsilon, delta, and the optimal order.
|
||||
|
||||
Raises:
|
||||
ValueError: If target_eps and target_delta are messed up.
|
||||
"""
|
||||
if target_eps is None and target_delta is None:
|
||||
raise ValueError(
|
||||
"Exactly one out of eps and delta must be None. (Both are).")
|
||||
|
||||
if target_eps is not None and target_delta is not None:
|
||||
raise ValueError(
|
||||
"Exactly one out of eps and delta must be None. (None is).")
|
||||
|
||||
accountant = dp_accounting.rdp.RdpAccountant(orders)
|
||||
accountant._rdp = rdp # pylint: disable=protected-access
|
||||
|
||||
if target_eps is not None:
|
||||
delta, opt_order = accountant.get_delta_and_optimal_order(target_eps)
|
||||
return target_eps, delta, opt_order
|
||||
else:
|
||||
eps, opt_order = accountant.get_epsilon_and_optimal_order(target_delta)
|
||||
return eps, target_delta, opt_order
|
|
@ -1,257 +0,0 @@
|
|||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
from absl.testing import parameterized
|
||||
import mpmath
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import rdp_accountant
|
||||
|
||||
#################################
|
||||
# HELPER FUNCTIONS: #
|
||||
# Exact computations using #
|
||||
# multi-precision arithmetic. #
|
||||
#################################
|
||||
|
||||
|
||||
def _log_float_mp(x):
|
||||
# Convert multi-precision input to float log space.
|
||||
if x >= sys.float_info.min:
|
||||
return float(mpmath.log(x))
|
||||
else:
|
||||
return -np.inf
|
||||
|
||||
|
||||
def _integral_mp(fn, bounds=(-mpmath.inf, mpmath.inf)):
|
||||
integral, _ = mpmath.quad(fn, bounds, error=True, maxdegree=8)
|
||||
return integral
|
||||
|
||||
|
||||
def _distributions_mp(sigma, q):
|
||||
|
||||
def _mu0(x):
|
||||
return mpmath.npdf(x, mu=0, sigma=sigma)
|
||||
|
||||
def _mu1(x):
|
||||
return mpmath.npdf(x, mu=1, sigma=sigma)
|
||||
|
||||
def _mu(x):
|
||||
return (1 - q) * _mu0(x) + q * _mu1(x)
|
||||
|
||||
return _mu0, _mu # Closure!
|
||||
|
||||
|
||||
def _mu1_over_mu0(x, sigma):
|
||||
# Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x.
|
||||
return mpmath.exp((2 * x - 1) / (2 * sigma**2))
|
||||
|
||||
|
||||
def _mu_over_mu0(x, q, sigma):
|
||||
return (1 - q) + q * _mu1_over_mu0(x, sigma)
|
||||
|
||||
|
||||
def _compute_a_mp(sigma, q, alpha):
|
||||
"""Compute A_alpha for arbitrary alpha by numerical integration."""
|
||||
mu0, _ = _distributions_mp(sigma, q)
|
||||
a_alpha_fn = lambda z: mu0(z) * _mu_over_mu0(z, q, sigma)**alpha
|
||||
a_alpha = _integral_mp(a_alpha_fn)
|
||||
return a_alpha
|
||||
|
||||
|
||||
class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
# TEST ROUTINES
|
||||
def test_compute_heterogeneous_rdp_different_sampling_probabilities(self):
|
||||
sampling_probabilities = [0, 1]
|
||||
noise_multipliers = [10, 10]
|
||||
steps_list = [1, 1]
|
||||
orders = 20
|
||||
self.assertEqual(
|
||||
rdp_accountant.compute_heterogeneous_rdp(sampling_probabilities,
|
||||
noise_multipliers, steps_list,
|
||||
orders), 0.1)
|
||||
|
||||
def test_compute_rdp_no_data(self):
|
||||
# q = 0
|
||||
self.assertEqual(rdp_accountant.compute_rdp(0, 10, 1, 20), 0)
|
||||
|
||||
def test_compute_rdp_no_sampling(self):
|
||||
# q = 1, RDP = alpha/2 * sigma^2
|
||||
self.assertEqual(rdp_accountant.compute_rdp(1, 10, 1, 20), 0.1)
|
||||
|
||||
def test_compute_rdp_scalar(self):
|
||||
rdp_scalar = rdp_accountant.compute_rdp(0.1, 2, 10, 5)
|
||||
self.assertAlmostEqual(rdp_scalar, 0.07737, places=5)
|
||||
|
||||
def test_compute_rdp_sequence_without_replacement(self):
|
||||
rdp_vec = rdp_accountant.compute_rdp_sample_without_replacement(
|
||||
0.01, 2.5, 50, [1.001, 1.5, 2.5, 5, 50, 100, 256, 512, 1024, np.inf])
|
||||
self.assertAllClose(
|
||||
rdp_vec, [
|
||||
3.4701e-3, 3.4701e-3, 4.6386e-3, 8.7634e-3, 9.8474e-2, 1.6776e2,
|
||||
7.9297e2, 1.8174e3, 3.8656e3, np.inf
|
||||
],
|
||||
rtol=1e-4)
|
||||
|
||||
def test_compute_rdp_sequence(self):
|
||||
rdp_vec = rdp_accountant.compute_rdp(0.01, 2.5, 50,
|
||||
[1.5, 2.5, 5, 50, 100, np.inf])
|
||||
self.assertAllClose(
|
||||
rdp_vec,
|
||||
[6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02, np.inf],
|
||||
rtol=1e-4)
|
||||
|
||||
params = ({
|
||||
'q': 1e-7,
|
||||
'sigma': .1,
|
||||
'order': 1.01
|
||||
}, {
|
||||
'q': 1e-6,
|
||||
'sigma': .1,
|
||||
'order': 256
|
||||
}, {
|
||||
'q': 1e-5,
|
||||
'sigma': .1,
|
||||
'order': 256.1
|
||||
}, {
|
||||
'q': 1e-6,
|
||||
'sigma': 1,
|
||||
'order': 27
|
||||
}, {
|
||||
'q': 1e-4,
|
||||
'sigma': 1.,
|
||||
'order': 1.5
|
||||
}, {
|
||||
'q': 1e-3,
|
||||
'sigma': 1.,
|
||||
'order': 2
|
||||
}, {
|
||||
'q': .01,
|
||||
'sigma': 10,
|
||||
'order': 20
|
||||
}, {
|
||||
'q': .1,
|
||||
'sigma': 100,
|
||||
'order': 20.5
|
||||
}, {
|
||||
'q': .99,
|
||||
'sigma': .1,
|
||||
'order': 256
|
||||
}, {
|
||||
'q': .999,
|
||||
'sigma': 100,
|
||||
'order': 256.1
|
||||
})
|
||||
|
||||
def test_get_privacy_spent_check_target_delta(self):
|
||||
orders = range(2, 33)
|
||||
rdp = [1.1 for o in orders] # Constant corresponds to pure DP.
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_delta=1e-5)
|
||||
# Since rdp is constant, it should always pick the largest order.
|
||||
self.assertEqual(opt_order, 32)
|
||||
# Knowing the optimal order, we can calculate eps by hand.
|
||||
self.assertAlmostEqual(eps, 1.32783806176)
|
||||
|
||||
# Second test for Gaussian noise (with no subsampling):
|
||||
orders = [0.001 * i for i in range(1000, 100000)
|
||||
] # Pick fine set of orders.
|
||||
rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders)
|
||||
# Scale is chosen to obtain exactly (1,1e-6)-DP.
|
||||
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6)
|
||||
self.assertAlmostEqual(eps, 1)
|
||||
|
||||
def test_get_privacy_spent_check_target_eps(self):
|
||||
orders = range(2, 33)
|
||||
rdp = [1.1 for o in orders] # Constant corresponds to pure DP.
|
||||
_, delta, opt_order = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_eps=1.32783806176)
|
||||
# Since rdp is constant, it should always pick the largest order.
|
||||
self.assertEqual(opt_order, 32)
|
||||
self.assertAlmostEqual(delta, 1e-5)
|
||||
|
||||
# Second test for Gaussian noise (with no subsampling):
|
||||
orders = [0.001 * i for i in range(1000, 100000)] # Pick fine set of order.
|
||||
rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders)
|
||||
# Scale is chosen to obtain exactly (1,1e-6)-DP.
|
||||
_, delta, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_eps=1)
|
||||
self.assertAlmostEqual(delta, 1e-6)
|
||||
|
||||
def test_check_composition(self):
|
||||
orders = (1.25, 1.5, 1.75, 2., 2.5, 3., 4., 5., 6., 7., 8., 10., 12., 14.,
|
||||
16., 20., 24., 28., 32., 64., 256.)
|
||||
|
||||
rdp = rdp_accountant.compute_rdp(
|
||||
q=1e-4, noise_multiplier=.4, steps=40000, orders=orders)
|
||||
|
||||
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6)
|
||||
|
||||
rdp += rdp_accountant.compute_rdp(
|
||||
q=0.1, noise_multiplier=2, steps=100, orders=orders)
|
||||
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-5)
|
||||
# These tests use the old RDP -> approx DP conversion
|
||||
# self.assertAlmostEqual(eps, 8.509656, places=5)
|
||||
# self.assertEqual(opt_order, 2.5)
|
||||
# But these still provide an upper bound
|
||||
self.assertLessEqual(eps, 8.509656)
|
||||
|
||||
def test_get_privacy_spent_consistency(self):
|
||||
orders = range(2, 50) # Large range of orders (helps test for overflows).
|
||||
for q in [0.01, 0.1, 0.8, 1.]: # Different subsampling rates.
|
||||
for multiplier in [0.1, 1., 3., 10., 100.]: # Different noise scales.
|
||||
rdp = rdp_accountant.compute_rdp(q, multiplier, 1, orders)
|
||||
for delta in [.9, .5, .1, .01, 1e-3, 1e-4, 1e-5, 1e-6, 1e-9, 1e-12]:
|
||||
eps1, delta1, ord1 = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_delta=delta)
|
||||
eps2, delta2, ord2 = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_eps=eps1)
|
||||
self.assertEqual(delta1, delta)
|
||||
self.assertEqual(eps2, eps1)
|
||||
if eps1 != 0:
|
||||
self.assertEqual(ord1, ord2)
|
||||
self.assertAlmostEqual(delta, delta2)
|
||||
else: # This is a degenerate case; we won't have consistency.
|
||||
self.assertLessEqual(delta2, delta)
|
||||
|
||||
def test_get_privacy_spent_gaussian(self):
|
||||
# Compare the optimal bound for Gaussian with the one derived from RDP.
|
||||
# Also compare the RDP upper bound with the "standard" upper bound.
|
||||
orders = [0.1 * x for x in range(10, 505)]
|
||||
eps_vec = [0.1 * x for x in range(500)]
|
||||
rdp = rdp_accountant.compute_rdp(1, 1, 1, orders)
|
||||
for eps in eps_vec:
|
||||
_, delta, _ = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_eps=eps)
|
||||
# For comparison, we compute the optimal guarantee for Gaussian
|
||||
# using https://arxiv.org/abs/1805.06530 Theorem 8 (in v2).
|
||||
delta0 = math.erfc((eps - .5) / math.sqrt(2)) / 2
|
||||
delta0 = delta0 - math.exp(eps) * math.erfc((eps + .5) / math.sqrt(2)) / 2
|
||||
self.assertLessEqual(delta0, delta + 1e-300) # need tolerance 10^-300
|
||||
|
||||
# Compute the "standard" upper bound, which should be an upper bound.
|
||||
# Note, if orders is too sparse, this will NOT be an upper bound.
|
||||
if eps >= 0.5:
|
||||
delta1 = math.exp(-0.5 * (eps - 0.5)**2)
|
||||
else:
|
||||
delta1 = 1
|
||||
self.assertLessEqual(delta, delta1 + 1e-300)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
Loading…
Reference in a new issue