1. Adding a CLI script for computing privacy loss for DP-SGD.

2. Fixing typos in the MNIST tutorial.

PiperOrigin-RevId: 230608908
This commit is contained in:
A. Unique TensorFlower 2019-01-23 14:56:05 -08:00
parent c8cb3c6b70
commit 4f9cc8ef3e
3 changed files with 108 additions and 3 deletions

View file

@ -0,0 +1,92 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Command-line script for computing privacy of a model trained with DP-SGD.
The script applies the RDP accountant to estimate privacy budget of an iterated
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
Example:
compute_dp_sgd_privacy
--N=60000 \
--batch_size=256 \
--noise_multiplier=1.12 \
--epochs=60 \
--delta=1e-5
The output states that DP-SGD with these parameters satisfies (2.92, 1e-5)-DP.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from absl import app
from absl import flags
from privacy.analysis.rdp_accountant import compute_rdp
from privacy.analysis.rdp_accountant import get_privacy_spent
FLAGS = flags.FLAGS
flags.DEFINE_integer('N', None, 'Total number of examples')
flags.DEFINE_integer('batch_size', None, 'Batch size')
flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD')
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
flags.DEFINE_float('delta', 1e-6, 'Target delta')
flags.mark_flag_as_required('N')
flags.mark_flag_as_required('batch_size')
flags.mark_flag_as_required('noise_multiplier')
flags.mark_flag_as_required('epochs')
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis."""
rdp = compute_rdp(q, sigma, steps, orders)
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
' over {} steps satisfies'.format(100 * q, sigma, steps), end=' ')
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
eps, delta))
print('The optimal RDP order is {}.'.format(opt_order))
if opt_order == max(orders) or opt_order == min(orders):
print('The privacy estimate is likely to be improved by expanding '
'the set of orders.')
def main(argv):
del argv # argv is not used.
q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio.
if q > 1:
raise app.UsageError('N must be larger than the batch size.')
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] + range(5, 64) +
[128, 256, 512])
steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size))
apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta)
if __name__ == '__main__':
app.run(main)

View file

@ -70,6 +70,19 @@ Test accuracy after 60 epochs is: 0.966
For delta=1e-5, the current epsilon is: 2.92
```
## Using Command-Line Interface for Privacy Budgeting
Before launching a (possibly quite lengthy) training procedure, it is possible
to compute, quickly and accurately, privacy loss at any point of the training.
To do so, run the script `privacy/analysis/compute_dp_sgd_privacy.py`, which
does not have any TensorFlow dependencies. For example, executing
```
compute_dp_sgd_privacy.py --N=60000 --batch_size=256 --noise_multiplier=1.12 --epochs=60 --delta=1e-5
```
allows us to conclude, in a matter of seconds, that DP-SGD run with default
parameters satisfies differential privacy with eps = 2.92 and delta = 1e-05.
## Select Parameters
The table below has a few sample parameters illustrating various accuracy/privacy

View file

@ -25,7 +25,7 @@ from privacy.analysis.rdp_accountant import compute_rdp
from privacy.analysis.rdp_accountant import get_privacy_spent
from privacy.optimizers import dp_optimizer
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False,'
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
tf.flags.DEFINE_float('learning_rate', 0.08, 'Learning rate for training')
tf.flags.DEFINE_float('noise_multiplier', 1.12,
@ -33,8 +33,8 @@ tf.flags.DEFINE_float('noise_multiplier', 1.12,
tf.flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
tf.flags.DEFINE_integer('batch_size', 256, 'Batch size')
tf.flags.DEFINE_integer('epochs', 60, 'Number of epochs')
tf.flags.DEFINE_integer('microbatches', 256,
'Number of microbatches (must evenly divide batch_size')
tf.flags.DEFINE_integer('microbatches', 256, 'Number of microbatches '
'(must evenly divide batch_size)')
tf.flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = tf.flags.FLAGS