Merge pull request #143 from jagielski:master

PiperOrigin-RevId: 358924580
This commit is contained in:
A. Unique TensorFlower 2021-02-22 16:01:24 -08:00
commit 5524409cbd
3 changed files with 193 additions and 0 deletions

View file

@ -0,0 +1,69 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Command-line script for computing privacy of a model trained with DP-SGD.
The script applies the RDP accountant to estimate privacy budget of an iterated
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
Example:
compute_noise_from_budget
--N=60000 \
--batch_size=256 \
--epsilon=2.92 \
--epochs=60 \
--delta=1e-5 \
--min_noise=1e-6
The output states that DP-SGD with these parameters should
use a noise multiplier of 1.12.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
from absl import app
from absl import flags
from tensorflow_privacy.privacy.analysis.compute_noise_from_budget_lib import compute_noise
# Opting out of loading all sibling packages and their dependencies.
sys.skip_tf_privacy_import = True
FLAGS = flags.FLAGS
flags.DEFINE_integer('N', None, 'Total number of examples')
flags.DEFINE_integer('batch_size', None, 'Batch size')
flags.DEFINE_float('epsilon', None, 'Target epsilon for DP-SGD')
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
flags.DEFINE_float('delta', 1e-6, 'Target delta')
flags.DEFINE_float('min_noise', 1e-5, 'Minimum noise level for search.')
def main(argv):
del argv # argv is not used.
assert FLAGS.N is not None, 'Flag N is missing.'
assert FLAGS.batch_size is not None, 'Flag batch_size is missing.'
assert FLAGS.epsilon is not None, 'Flag epsilon is missing.'
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon,
FLAGS.epochs, FLAGS.delta, FLAGS.min_noise)
if __name__ == '__main__':
app.run(main)

View file

@ -0,0 +1,83 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library for computing privacy values for DP-SGD."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import sys
from absl import app
from scipy.optimize import bisect
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
# Opting out of loading all sibling packages and their dependencies.
sys.skip_tf_privacy_import = True
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis."""
# compute_rdp requires that sigma be the ratio of the standard deviation of
# the Gaussian noise to the l2-sensitivity of the function to which it is
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
rdp = compute_rdp(q, sigma, steps, orders)
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
return eps, opt_order
def compute_noise(n, batch_size, target_epsilon, epochs, delta, noise_lbd):
"""Compute noise based on the given hyperparameters."""
q = batch_size / n # q - the sampling ratio.
if q > 1:
raise app.UsageError('n must be larger than the batch size.')
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
list(range(5, 64)) + [128, 256, 512])
steps = int(math.ceil(epochs * n / batch_size))
init_noise = noise_lbd # minimum possible noise
init_epsilon, _ = apply_dp_sgd_analysis(q, init_noise, steps, orders, delta)
if init_epsilon < target_epsilon: # noise_lbd was an overestimate
print('min_noise too large for target epsilon.')
return 0
cur_epsilon = init_epsilon
max_noise, min_noise = init_noise, 0
# doubling to find the right range
while cur_epsilon > target_epsilon: # until noise is large enough
max_noise, min_noise = max_noise * 2, max_noise
cur_epsilon, _ = apply_dp_sgd_analysis(q, max_noise, steps, orders, delta)
def epsilon_fn(noise): # should return 0 if guess_epsilon==target_epsilon
guess_epsilon = apply_dp_sgd_analysis(q, noise, steps, orders, delta)[0]
return guess_epsilon - target_epsilon
target_noise = bisect(epsilon_fn, min_noise, max_noise)
print(
'DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
' over {} steps satisfies'.format(100 * q, target_noise, steps),
end=' ')
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
target_epsilon, delta))
return target_noise

View file

@ -0,0 +1,41 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import absltest
from absl.testing import parameterized
from tensorflow_privacy.privacy.analysis import compute_noise_from_budget_lib
class ComputeNoiseFromBudgetTest(parameterized.TestCase):
@parameterized.named_parameters(
('Test0', 60000, 150, 0.941870567, 15, 1e-5, 1e-5, 1.3),
('Test1', 100000, 100, 1.70928734, 30, 1e-7, 1e-6, 1.0),
('Test2', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1e-5, 0.1),
('Test3', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1, 0),
)
def test_compute_noise(self, n, batch_size, target_epsilon, epochs,
delta, min_noise, expected_noise):
target_noise = compute_noise_from_budget_lib.compute_noise(
n, batch_size, target_epsilon, epochs, delta, min_noise)
self.assertAlmostEqual(target_noise, expected_noise)
if __name__ == '__main__':
absltest.main()