Merge pull request #184 from carlini/instahide
Add InstaHide attack code to research folder
This commit is contained in:
commit
66338409b7
8 changed files with 650 additions and 0 deletions
66
research/instahide_attack_2020/README.md
Normal file
66
research/instahide_attack_2020/README.md
Normal file
|
@ -0,0 +1,66 @@
|
|||
Implementation of our reconstruction attack on InstaHide.
|
||||
|
||||
Is Private Learning Possible with Instance Encoding?
|
||||
Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Shuang Song, Abhradeep Thakurta, Florian Tramer
|
||||
https://arxiv.org/abs/2011.05315
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
InstaHide is a recent privacy-preserving machine learning framework.
|
||||
It takes a (sensitive) dataset and generates encoded images that are privacy-preserving.
|
||||
Our attack breaks InstaHide and shows it does not offer meaningful privacy.
|
||||
Given the encoded dataset, we can recover a near-identical copy of the original images.
|
||||
|
||||
This repository implements the attack described in our paper. It consists of a number of
|
||||
steps that shoul be run sequentially. It assumes access to pre-trained neural network
|
||||
classifiers that should be downloaded following the steps below.
|
||||
|
||||
|
||||
### Requirements
|
||||
|
||||
* Python, version ≥ 3.5
|
||||
* jax
|
||||
* jaxlib
|
||||
* objax (https://github.com/google/objax)
|
||||
* PIL
|
||||
* sklearn
|
||||
|
||||
|
||||
### Running the attack
|
||||
|
||||
To reproduce our results and run the attack, each of the files should be run in turn.
|
||||
|
||||
0. Download the necessary dependency files:
|
||||
- (encryption.npy)[https://www.dropbox.com/sh/8zdsr1sjftia4of/AAA-60TOjGKtGEZrRmbawwqGa?dl=0] and (labels.npy)[https://www.dropbox.com/sh/8zdsr1sjftia4of/AAA-60TOjGKtGEZrRmbawwqGa?dl=0] from the (InstaHide Challenge)[https://github.com/Hazelsuko07/InstaHide_Challenge]
|
||||
- The (saved models)[https://drive.google.com/file/d/1YfKzGRfnnzKfUKpLjIRXRto8iD4FdwGw/view?usp=sharing] used to run the attack
|
||||
- Set up all the requirements as above
|
||||
|
||||
1. Run `step_1_create_graph.py`. Produce the similarity graph to pair together encoded images that share an original image.
|
||||
|
||||
2. Run `step_2_color_graph.py`. Color the graph to find 50 dense cliques.
|
||||
|
||||
3. Run `step_3_second_graph.py`. Create a new bipartite similarity graph.
|
||||
|
||||
4. Run `step_4_final_graph.py`. Solve the matching problem to assign encoded images to original images.
|
||||
|
||||
5. Run `step_5_reconstruct.py`. Reconstruct the original images.
|
||||
|
||||
6. Run `step_6_adjust_color.py`. Adjust the color curves to match.
|
||||
|
||||
7. Run `step_7_visualize.py`. Show the final resulting images.
|
||||
|
||||
## Citation
|
||||
|
||||
You can cite this attack at
|
||||
|
||||
```
|
||||
@inproceedings{carlini2021private,
|
||||
title={Is Private Learning Possible with Instance Encoding?},
|
||||
author={Carlini, Nicholas and Deng, Samuel and Garg, Sanjam and Jha, Somesh and Mahloujifar, Saeed and Mahmoody, Mohammad and Thakurta, Abhradeep and Tram{\`e}r, Florian},
|
||||
booktitle={2021 IEEE Symposium on Security and Privacy (SP)},
|
||||
pages={410--427},
|
||||
year={2021},
|
||||
organization={IEEE}
|
||||
}
|
||||
```
|
77
research/instahide_attack_2020/step_1_create_graph.py
Normal file
77
research/instahide_attack_2020/step_1_create_graph.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""
|
||||
Create the similarity graph given the encoded images by running the similarity
|
||||
neural network over all pairs of images.
|
||||
"""
|
||||
|
||||
import objax
|
||||
import numpy as np
|
||||
import jax.numpy as jn
|
||||
import functools
|
||||
import os
|
||||
import random
|
||||
|
||||
from objax.zoo import wide_resnet
|
||||
|
||||
def setup():
|
||||
global model
|
||||
class DoesUseSame(objax.Module):
|
||||
def __init__(self):
|
||||
fn = functools.partial(wide_resnet.WideResNet, depth=28, width=6)
|
||||
self.model = fn(6,2)
|
||||
|
||||
model_vars = self.model.vars()
|
||||
self.ema = objax.optimizer.ExponentialMovingAverage(model_vars, momentum=0.999, debias=True)
|
||||
|
||||
|
||||
def predict_op(x,y):
|
||||
# The model takes the two images and checks if they correspond
|
||||
# to the same original image.
|
||||
xx = jn.concatenate([jn.abs(x),
|
||||
jn.abs(y)],
|
||||
axis=1)
|
||||
return self.model(xx, training=False)
|
||||
|
||||
self.predict = objax.Jit(self.ema.replace_vars(predict_op), model_vars + self.ema.vars())
|
||||
self.predict_fast = objax.Parallel(self.ema.replace_vars(predict_op), model_vars + self.ema.vars())
|
||||
|
||||
model = DoesUseSame()
|
||||
checkpoint = objax.io.Checkpoint("models/step1/", keep_ckpts=5, makedir=True)
|
||||
start_epoch, last_ckpt = checkpoint.restore(model.vars())
|
||||
|
||||
|
||||
def doall():
|
||||
global graph
|
||||
n = np.load("data/encryption.npy")
|
||||
n = np.transpose(n, (0,3,1,2))
|
||||
|
||||
# Compute the similarity between each encoded image and all others
|
||||
# This is n^2 work but should run fairly quickly, especially given
|
||||
# more than one GPU. Otherwise about an hour or so.
|
||||
graph = []
|
||||
with model.vars().replicate():
|
||||
for i in range(5000):
|
||||
print(i)
|
||||
v = model.predict_fast(np.tile(n[i:i+1], (5000,1,1,1)), n)
|
||||
graph.append(np.array(v[:,0]-v[:,1]))
|
||||
graph = np.array(graph)
|
||||
np.save("data/graph.npy", graph)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup()
|
||||
doall()
|
95
research/instahide_attack_2020/step_2_color_graph.py
Normal file
95
research/instahide_attack_2020/step_2_color_graph.py
Normal file
|
@ -0,0 +1,95 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import multiprocessing as mp
|
||||
import pickle
|
||||
import random
|
||||
import collections
|
||||
import numpy as np
|
||||
|
||||
def score(subset):
|
||||
sub = graph[subset]
|
||||
sub = sub[:,subset]
|
||||
return np.sum(sub)
|
||||
|
||||
def run(v, return_scores=False):
|
||||
if isinstance(v, int):
|
||||
v = [v]
|
||||
scores = []
|
||||
for _ in range(100):
|
||||
keep = graph[v,:]
|
||||
next_value = np.sum(keep,axis=0)
|
||||
to_add = next_value.argsort()
|
||||
to_add = [x for x in to_add if x not in v]
|
||||
if _ < 1:
|
||||
v.append(to_add[random.randint(0,10)])
|
||||
else:
|
||||
v.append(to_add[0])
|
||||
if return_scores:
|
||||
scores.append(score(v)/len(keep))
|
||||
if return_scores:
|
||||
return v, scores
|
||||
else:
|
||||
return v
|
||||
|
||||
def make_many_clusters():
|
||||
# Compute clusters of 100 examples that probably correspond to some original image
|
||||
p = mp.Pool(mp.cpu_count())
|
||||
s = p.map(run, range(2000))
|
||||
return s
|
||||
|
||||
|
||||
def downselect_clusters(s):
|
||||
# Right now we have a lot of clusters, but they probably overlap. Let's remove that.
|
||||
# We want to find disjoint clusters, so we'll greedily add them until we have
|
||||
# 100 distjoint clusters.
|
||||
|
||||
ss = [set(x) for x in s]
|
||||
|
||||
keep = []
|
||||
keep_set = []
|
||||
for iteration in range(2):
|
||||
for this_set in s:
|
||||
# MAGIC NUMBERS...!
|
||||
# We want clusters of size 50 because it works
|
||||
# Except on iteration 2 where we'll settle for 25 if we haven't
|
||||
# found clusters with 50 neighbors that work.
|
||||
cur = set(this_set[:50 - 25*iteration])
|
||||
intersections = np.array([len(cur & x) for x in ss])
|
||||
good = np.sum(intersections==50)>2
|
||||
# Good means that this cluster isn't a fluke and some other cluster
|
||||
# is like this one.
|
||||
if good or iteration == 1:
|
||||
print("N")
|
||||
# And also make sure we haven't found this cluster (or one like it).
|
||||
already_found = np.array([len(cur & x) for x in keep_set])
|
||||
if np.all(already_found<len(cur)/2):
|
||||
print("And is new")
|
||||
keep.append(this_set)
|
||||
keep_set.append(set(this_set))
|
||||
if len(keep) == 100:
|
||||
break
|
||||
print("Found", len(keep))
|
||||
if len(keep) == 100:
|
||||
break
|
||||
|
||||
# Keep should now have 100 items.
|
||||
# If it doesn't go and change the 2000 in make_many_clusters to a bigger number.
|
||||
return keep
|
||||
|
||||
if __name__ == "__main__":
|
||||
graph = np.load("data/graph.npy")
|
||||
np.save("data/many_clusters",make_many_clusters())
|
||||
np.save("data/100_clusters", downselect_clusters(np.load("data/many_clusters.npy")))
|
114
research/instahide_attack_2020/step_3_second_graph.py
Normal file
114
research/instahide_attack_2020/step_3_second_graph.py
Normal file
|
@ -0,0 +1,114 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""
|
||||
Create the improved graph mapping each encoded image to an original image.
|
||||
"""
|
||||
|
||||
import objax
|
||||
import numpy as np
|
||||
import jax.numpy as jn
|
||||
import functools
|
||||
import os
|
||||
import random
|
||||
|
||||
from objax.zoo import wide_resnet
|
||||
|
||||
|
||||
def setup():
|
||||
global model
|
||||
class DoesUseSame(objax.Module):
|
||||
def __init__(self):
|
||||
fn = functools.partial(wide_resnet.WideResNet, depth=28, width=6)
|
||||
self.model = fn(3*4,2)
|
||||
|
||||
model_vars = self.model.vars()
|
||||
self.ema = objax.optimizer.ExponentialMovingAverage(model_vars, momentum=0.999, debias=True)
|
||||
|
||||
|
||||
def predict_op(x,y):
|
||||
# The model takes SEVERAL images and checks if they all correspond
|
||||
# to the same original image.
|
||||
# Guaranteed that the first N-1 all do, the test is if the last does.
|
||||
xx = jn.concatenate([jn.abs(x),
|
||||
jn.abs(y)],
|
||||
axis=1)
|
||||
return self.model(xx, training=False)
|
||||
|
||||
self.predict = objax.Jit(self.ema.replace_vars(predict_op), model_vars + self.ema.vars())
|
||||
|
||||
model = DoesUseSame()
|
||||
checkpoint = objax.io.Checkpoint("models/step2/", keep_ckpts=5, makedir=True)
|
||||
start_epoch, last_ckpt = checkpoint.restore(model.vars())
|
||||
|
||||
def step2():
|
||||
global v, n, u, nextgraph
|
||||
|
||||
# Start out by loading the encoded images
|
||||
n = np.load("data/encryption.npy")
|
||||
n = np.transpose(n, (0,3,1,2))
|
||||
|
||||
# Then load the graph with 100 cluster-centers.
|
||||
keep = np.array(np.load("data/100_clusters.npy", allow_pickle=True))
|
||||
graph = np.load("data/graph.npy")
|
||||
|
||||
|
||||
# Now we're going to record the distance to each of the cluster centers
|
||||
# from every encoded image, so that we can do the matching.
|
||||
|
||||
# To do that, though, first we need to choose the cluster centers.
|
||||
# Start out by choosing the best cluster centers.
|
||||
|
||||
distances = []
|
||||
|
||||
for x in keep:
|
||||
this_set = x[:50]
|
||||
use_elts = graph[this_set]
|
||||
distances.append(np.sum(use_elts,axis=0))
|
||||
distances = np.array(distances)
|
||||
|
||||
ds = np.argsort(distances, axis=1)
|
||||
|
||||
# Now we record the "prototypes" of each cluster center.
|
||||
# We just need three, more might help a little bit but not much.
|
||||
# (And then do that ten times, so we can average out noise
|
||||
# with respect to which cluster centers we picked.)
|
||||
|
||||
prototypes = []
|
||||
for _ in range(10):
|
||||
ps = []
|
||||
# choose 3 random samples from each set
|
||||
for i in range(3):
|
||||
ps.append(n[ds[:,random.randint(0,20)]])
|
||||
prototypes.append(np.concatenate(ps,1))
|
||||
prototypes = np.concatenate(prototypes,0)
|
||||
|
||||
# Finally compute the distances from each node to each cluster center.
|
||||
nextgraph = []
|
||||
for i in range(5000):
|
||||
out = model.predict(prototypes, np.tile(n[i:i+1], (1000,1,1,1)))
|
||||
out = out.reshape((10, 100, 2))
|
||||
|
||||
v = np.sum(out,axis=0)
|
||||
v = v[:,0] - v[:,1]
|
||||
v = np.array(v)
|
||||
nextgraph.append(v)
|
||||
|
||||
np.save("data/nextgraph.npy", nextgraph)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup()
|
||||
step2()
|
51
research/instahide_attack_2020/step_4_final_graph.py
Normal file
51
research/instahide_attack_2020/step_4_final_graph.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import multiprocessing as mp
|
||||
import pickle
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
|
||||
labels = np.load("data/label.npy")
|
||||
nextgraph = np.load("data/nextgraph.npy")
|
||||
|
||||
assigned = [[] for _ in range(5000)]
|
||||
lambdas = [[] for _ in range(5000)]
|
||||
for i in range(100):
|
||||
order = (np.argsort(nextgraph[:,i]))
|
||||
correct = (labels[order[:20]]>0).sum(axis=0).argmax()
|
||||
|
||||
# Let's create the final graph
|
||||
# Instead of doing a full bipartite matching, let's just greedily
|
||||
# choose the closest 80 candidates for each encoded image to pair
|
||||
# together can call it a day.
|
||||
# This is within a percent or two of doing that, and much easier.
|
||||
|
||||
# Also record the lambdas based on which image it coresponds to,
|
||||
# but if they share a label then just guess it's an even 50/50 split.
|
||||
|
||||
|
||||
for x in order[:80]:
|
||||
if labels[x][correct] > 0 and len(assigned[x]) < 2:
|
||||
assigned[x].append(i)
|
||||
if np.sum(labels[x]>0) == 1:
|
||||
# the same label was mixed in twice. punt.
|
||||
lambdas[x].append(labels[x][correct]/2)
|
||||
else:
|
||||
lambdas[x].append(labels[x][correct])
|
||||
|
||||
np.save("data/predicted_pairings_80.npy", assigned)
|
||||
np.save("data/predicted_lambdas_80.npy", lambdas)
|
143
research/instahide_attack_2020/step_5_reconstruct.py
Normal file
143
research/instahide_attack_2020/step_5_reconstruct.py
Normal file
|
@ -0,0 +1,143 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""
|
||||
The final recovery happens here. Given the graph, reconstruct images.
|
||||
"""
|
||||
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import jax.numpy as jn
|
||||
import jax
|
||||
import collections
|
||||
from PIL import Image
|
||||
|
||||
import jax.experimental.optimizers
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def toimg(x):
|
||||
#x = np.transpose(x,(1,2,0))
|
||||
print(x.shape)
|
||||
img = (x+1)*127.5
|
||||
return Image.fromarray(np.array(img,dtype=np.uint8))
|
||||
|
||||
|
||||
|
||||
def explained_variance(I, private_images, lambdas, encoded_images, public_to_private, return_mat=False):
|
||||
# private images: 100x32x32x3
|
||||
# encoded images: 5000x32x32x3
|
||||
|
||||
public_to_private = jax.nn.softmax(public_to_private,axis=-1)
|
||||
|
||||
# Compute the components from each of the images we know should map onto the same original image.
|
||||
component_1 = jn.dot(public_to_private[0], private_images.reshape((100,-1))).reshape((5000,32,32,3))
|
||||
component_2 = jn.dot(public_to_private[1], private_images.reshape((100,-1))).reshape((5000,32,32,3))
|
||||
|
||||
# Now combine them together to get the variance we can explain
|
||||
merged = component_1 * lambdas[:,0][:,None,None,None] + component_2 * lambdas[:,1][:,None,None,None]
|
||||
|
||||
# And now get the variance we can't explain.
|
||||
# This is the contribution of the public images.
|
||||
# We want this value to be small.
|
||||
|
||||
def keep_smallest_abs(xx1, xx2):
|
||||
t = 0
|
||||
which = (jn.abs(xx1+t) < jn.abs(xx2+t)) + 0.0
|
||||
return xx1 * which + xx2 * (1-which)
|
||||
|
||||
xx1 = jn.abs(encoded) - merged
|
||||
xx2 = -(jn.abs(encoded) + merged)
|
||||
|
||||
xx = keep_smallest_abs(xx1, xx2)
|
||||
unexplained_variance = xx
|
||||
|
||||
|
||||
if return_mat:
|
||||
return unexplained_variance, xx1, xx2
|
||||
|
||||
extra = (1-jn.abs(private_images)).mean()*.05
|
||||
|
||||
return extra + (unexplained_variance**2).mean()
|
||||
|
||||
def setup():
|
||||
global private, imagenet40, encoded, lambdas, using, real_using, pub_using
|
||||
|
||||
# Load all the things we've made.
|
||||
encoded = np.load("data/encryption.npy")
|
||||
labels = np.load("data/label.npy")
|
||||
using = np.load("data/predicted_pairings_80.npy", allow_pickle=True)
|
||||
lambdas = list(np.load("data/predicted_lambdas_80.npy", allow_pickle=True))
|
||||
for x in lambdas:
|
||||
while len(x) < 2:
|
||||
x.append(0)
|
||||
lambdas = np.array(lambdas)
|
||||
|
||||
# Construct the mapping
|
||||
public_to_private_new = np.zeros((2, 5000, 100))
|
||||
|
||||
cs = [0]*100
|
||||
for i,row in enumerate(using):
|
||||
for j,b in enumerate(row[:2]):
|
||||
public_to_private_new[j, i, b] = 1e9
|
||||
cs[b] += 1
|
||||
using = public_to_private_new
|
||||
|
||||
def loss(private, lams, I):
|
||||
return explained_variance(I, private, lams, jn.array(encoded), jn.array(using))
|
||||
|
||||
def make_loss():
|
||||
global vg
|
||||
vg = jax.jit(jax.value_and_grad(loss, argnums=(0,1)))
|
||||
|
||||
def run():
|
||||
priv = np.zeros((100,32,32,3))
|
||||
uusing = np.array(using)
|
||||
lams = np.array(lambdas)
|
||||
|
||||
# Use Adam, because thinking hard is overrated we have magic pixie dust.
|
||||
init_1, opt_update_1, get_params_1 = jax.experimental.optimizers.adam(.01)
|
||||
@jax.jit
|
||||
def update_1(i, opt_state, gs):
|
||||
return opt_update_1(i, gs, opt_state)
|
||||
opt_state_1 = init_1(priv)
|
||||
|
||||
# 1000 iterations of gradient descent is probably enough
|
||||
for i in range(1000):
|
||||
value, grad = vg(priv, lams, i)
|
||||
|
||||
if i%100 == 0:
|
||||
print(value)
|
||||
|
||||
var,_,_ = explained_variance(0, priv, jn.array(lambdas), jn.array(encoded), jn.array(using),
|
||||
return_mat=True)
|
||||
print('unexplained min/max', var.min(), var.max())
|
||||
opt_state_1 = update_1(i, opt_state_1, grad[0])
|
||||
priv = opt_state_1.packed_state[0][0]
|
||||
|
||||
priv -= np.min(priv, axis=(1,2,3), keepdims=True)
|
||||
priv /= np.max(priv, axis=(1,2,3), keepdims=True)
|
||||
priv *= 2
|
||||
priv -= 1
|
||||
|
||||
# Finally save the stored values
|
||||
np.save("data/private_raw.npy", priv)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup()
|
||||
make_loss()
|
||||
run()
|
66
research/instahide_attack_2020/step_6_adjust_color.py
Normal file
66
research/instahide_attack_2020/step_6_adjust_color.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Fix the color curves. Use a pre-trained "neural network" with <100 weights.
|
||||
Visually this helps a lot, even if it's not doing much of anything in pactice.
|
||||
"""
|
||||
|
||||
import random
|
||||
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
||||
|
||||
import numpy as np
|
||||
import jax.numpy as jn
|
||||
|
||||
import objax
|
||||
|
||||
# Our extremely complicated neural network to re-color the images.
|
||||
# Takes one pixel at a time and fixes the color of that pixel.
|
||||
model = objax.nn.Sequential([objax.nn.Linear(3, 10),
|
||||
objax.functional.relu,
|
||||
objax.nn.Linear(10, 3)
|
||||
])
|
||||
|
||||
# These are the weights.
|
||||
weights = [[-0.09795442, -0.26434848, -0.24964345, -0.11450608, 0.6797288, -0.48435465,
|
||||
0.45307165, -0.31196147, -0.33266315, 0.20486055],
|
||||
[[-0.9056427, 0.02872663, -1.5114126, -0.41024876, -0.98195165, 0.1143966,
|
||||
0.6763464, -0.58654785, -1.797063, -0.2176538, ],
|
||||
[ 1.1941166, 0.15515928, 1.1691351, -0.7256186, 0.8046044, 1.3127686,
|
||||
-0.77297133, -1.1761239, 0.85841715, 0.95545965],
|
||||
[ 0.20092924, 0.57503146, 0.22809981, 1.5288007, -0.94781816, -0.68305916,
|
||||
-0.5245211, 1.4042739, -0.00527458, -1.1462274, ]],
|
||||
[0.15683544, 0.22086962, 0.33100453],
|
||||
[[ 7.7239674e-01, 4.0261227e-01, -9.6466336e-03],
|
||||
[-2.2159107e-01, 1.5123411e-01, 3.4485441e-01],
|
||||
[-1.7618114e+00, -7.1886492e-01, -4.6467595e-02],
|
||||
[ 6.9419539e-01, 6.2531930e-01, 7.2271496e-01],
|
||||
[-1.1913675e+00, -6.7755884e-01, -3.5114303e-01],
|
||||
[ 4.8022485e-01, 1.7145030e-01, 7.4849324e-04],
|
||||
[ 3.8332436e-02, -7.0614147e-01, -5.5127507e-01],
|
||||
[-1.0929481e+00, -1.0268525e+00, -7.0265180e-01],
|
||||
[ 1.4880739e+00, 7.1450096e-01, 2.9102692e-01],
|
||||
[ 7.2846663e-01, 7.1322352e-01, -1.7453632e-01]]]
|
||||
|
||||
for i,(k,v) in enumerate(model.vars().items()):
|
||||
v.assign(jn.array(weights[i]))
|
||||
|
||||
# Do all of the re-coloring
|
||||
predict = objax.Jit(lambda x: model(x, training=False),
|
||||
model.vars())
|
||||
|
||||
out = model(np.load("data/private_raw.npy"))
|
||||
np.save("data/private.npy", out)
|
38
research/instahide_attack_2020/step_7_visualize.py
Normal file
38
research/instahide_attack_2020/step_7_visualize.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
"""
|
||||
Given the private images, draw them in a 100x100 grid for visualization.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
p = np.load("data/private.npy")
|
||||
|
||||
def toimg(x):
|
||||
print(x.shape)
|
||||
img = (x+1)*127.5
|
||||
img = np.clip(img, 0, 255)
|
||||
img = np.reshape(img, (10, 10, 32, 32, 3))
|
||||
img = np.concatenate(img, axis=2)
|
||||
img = np.concatenate(img, axis=0)
|
||||
img = Image.fromarray(np.array(img,dtype=np.uint8))
|
||||
return img
|
||||
|
||||
toimg(p).save("data/reconstructed.png")
|
||||
|
Loading…
Reference in a new issue