diff --git a/tensorflow_privacy/__init__.py b/tensorflow_privacy/__init__.py index d3503f3..5a90fe5 100644 --- a/tensorflow_privacy/__init__.py +++ b/tensorflow_privacy/__init__.py @@ -45,6 +45,7 @@ else: from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_heterogeneous_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp + from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp_tree from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent # DPQuery classes diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant.py b/tensorflow_privacy/privacy/analysis/rdp_accountant.py index a328a63..500a16a 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant.py @@ -398,19 +398,22 @@ def compute_rdp(q, noise_multiplier, steps, orders): return rdp * steps -def _compute_rdp_tree(sigma, steps_list, max_participation, alpha): +def _compute_rdp_tree(sigma, steps_list, max_participation_list, alpha): """Computes RDP of the Tree Aggregation Protocol at order alpha.""" if np.isinf(alpha): return np.inf tree_depths = [ math.floor(math.log2(steps)) + 1 for steps in steps_list if steps > 0 ] - return alpha * max_participation * sum(tree_depths) / (2 * sigma**2) + record_occurence = [ + x * y for x, y in zip(max_participation_list, tree_depths) + ] + return alpha * sum(record_occurence) / (2 * sigma**2) def compute_rdp_tree( - noise_multiplier: float, steps_list: Collection[float], - max_participation: int, + noise_multiplier: float, steps_list: Union[float, Collection[float]], + max_participation_list: Union[int, Collection[int]], orders: Union[float, Collection[float]]) -> Collection[float]: """Computes RDP of the Tree Aggregation Protocol for Gaussian Mechanism. @@ -418,10 +421,11 @@ def compute_rdp_tree( noise_multiplier: A non-negative float representing the ratio of the standard deviation of the Gaussian noise to the l2-sensitivity of the function to which it is added. - steps_list: A list of non-negative intergers representing the number of - steps between tree restarts. - max_participation: A positive integer representing maximum number of times a - sample may appear between tree restarts. + steps_list: A scalar or a list of non-negative intergers representing the + number of steps between tree restarts. + max_participation_list: A scalar or a list of positive integers representing + maximum number of times a sample may appear between tree restarts. The + type (scalar/list) of `max_participation_list` should match `steps_list`. orders: An array (or a scalar) of RDP orders. Returns: @@ -433,23 +437,50 @@ def compute_rdp_tree( elif noise_multiplier == 0: return np.inf - if max_participation <= 0: - raise ValueError( - f"Max participation must be positive, got {max_participation}") - if not steps_list: - raise ValueError("List of steps must be non-empty.") + raise ValueError( + "steps_list must be a non-empty list, or a non-zero scalar, got " + f"{steps_list}.") + + if not max_participation_list: + raise ValueError( + "max_participation_list must be a non-empty list, or a non-zero scalar," + f" got {max_participation_list}.") + + if np.isscalar(steps_list) and np.isscalar(max_participation_list): + steps_list = [steps_list] + max_participation_list = [max_participation_list] + elif np.isscalar(steps_list): + raise ValueError( + "`steps_list` and `max_participation_list` must have the same type, got" + f"scalar of steps: {steps_list}, and list of max_participations with " + f"length {len(max_participation_list)}.") + elif np.isscalar(max_participation_list): + raise ValueError( + "`steps_list` and `max_participation_list` must have the same type, got" + f"scalar of max_participation: {max_participation_list}, and list of " + f"steps with length {len(steps_list)}.") + elif len(max_participation_list) != len(steps_list): + raise ValueError( + "`steps_list` and `max_participation_list` must have the same size, got" + f"steps length {len(steps_list)}, max_participations length " + f"{len(max_participation_list)}") + + for max_participation in max_participation_list: + if max_participation <= 0: + raise ValueError( + f"Max participation must be positive, got {max_participation}") for steps in steps_list: if steps < 0: - raise ValueError(f"List of steps must be non-negative, got {steps_list}") + raise ValueError(f"Steps must be non-negative, got {steps_list}") if np.isscalar(orders): - rdp = _compute_rdp_tree(noise_multiplier, steps_list, max_participation, - orders) + rdp = _compute_rdp_tree(noise_multiplier, steps_list, + max_participation_list, orders) else: rdp = np.array([ - _compute_rdp_tree(noise_multiplier, steps_list, max_participation, + _compute_rdp_tree(noise_multiplier, steps_list, max_participation_list, alpha) for alpha in orders ]) diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py index 33c51fd..583fa3f 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py @@ -272,7 +272,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): # This tests is based on the StackOverflow setting in "Practical and # Private (Deep) Learning without Sampling or Shuffling". The calculated # epsilon could be better as the method in this package keeps improving. - steps_list, target_delta, max_participation = [1600], 1e-6, 1 + steps_list, target_delta, max_participation = 1600, 1e-6, 1 rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, max_participation, orders) new_eps = rdp_accountant.get_privacy_spent( @@ -280,9 +280,33 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): self.assertLess(new_eps, eps) @parameterized.named_parameters( - ('restart4_max2', [400] * 4, 2), - ('restart2_max1', [800] * 2, 1), - ('adaptive_max4', [10, 400, 400, 400, 390], 4), + ('restart4_max2', [400] * 4, [2] * 4), + ('restart2_max1', [800] * 2, [1] * 2), + ('adaptive_max4', [10, 400, 400, 400, 390], [4] * 5), + ('adaptive', [10, 400, 400, 400, 390], [2, 3, 4, 4, 3])) + def test_compose_tree_rdp(self, steps_list, max_participation_list): + noise_multiplier, orders = 0.1, 1 + if np.isscalar(max_participation_list): + rdp_list = [ + rdp_accountant.compute_rdp_tree(noise_multiplier, steps, + max_participation_list, orders) + for steps in steps_list + ] + else: + rdp_list = [ + rdp_accountant.compute_rdp_tree(noise_multiplier, steps, + max_participation, orders) for steps, + max_participation in zip(steps_list, max_participation_list) + ] + rdp_composed = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, + max_participation_list, + orders) + self.assertAllClose(rdp_composed, sum(rdp_list), rtol=1e-12) + + @parameterized.named_parameters( + ('restart4_max2', [400] * 4, [2] * 4), + ('restart2_max1', [800] * 2, [1] * 2), + ('adaptive_max4', [10, 400, 400, 400, 390], [4] * 5), ) def test_compute_eps_tree_decreasing(self, steps_list, max_participation): # Test privacy epsilon decreases with noise multiplier increasing when @@ -299,11 +323,12 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): self.assertLess(eps, prev_eps) @parameterized.named_parameters( - ('negative_noise', -1, [3], 2, 1), + ('negative_noise', -1, 3, 2, 1), ('empty_steps', 1, [], 2, 1), - ('negative_steps', 1, [-3], 2, 1), - ('zero_participation', 1, [3], 0, 1), - ('negative_participation', 1, [3], -1, 1), + ('empty_part', 1, 1, [], 1), + ('negative_steps', 1, -3, 2, 1), + ('zero_participation', 1, 3, 0, 1), + ('negative_participation', 1, 3, -1, 1), ) def test_compute_rdp_tree_raise(self, noise_multiplier, steps_list, max_participation, orders): @@ -311,6 +336,18 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, max_participation, orders) + @parameterized.named_parameters( + ('list_scalar', [2], 1), + ('scalar_list', 2, [1]), + ('list_length', [2, 3], [1]), + ('list_length2', [2, 3], [1, 2, 2]), + ) + def test_compute_rdp_tree_raise_input_type(self, steps_list, + max_participation): + with self.assertRaisesRegex(ValueError, 'must have the same'): + rdp_accountant.compute_rdp_tree( + 0.1, steps_list, max_participation, orders=1) + @parameterized.named_parameters( ('t100n0.1', 100, 0.1), ('t1000n0.01', 1000, 0.01), @@ -318,7 +355,8 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): def test_no_tree_no_sampling(self, total_steps, noise_multiplier): orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) tree_rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, - [1] * total_steps, 1, orders) + [1] * total_steps, + [1] * total_steps, orders) rdp = rdp_accountant.compute_rdp(1., noise_multiplier, total_steps, orders) self.assertAllClose(tree_rdp, rdp, rtol=1e-12)