diff --git a/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras.py b/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras.py index d1c7b1b..5efa61d 100644 --- a/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras.py +++ b/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras.py @@ -61,10 +61,12 @@ def make_keras_optimizer_class(cls): self._dp_sum_query = gaussian_query.GaussianSumQuery( l2_norm_clip, l2_norm_clip * noise_multiplier) self._global_state = None + self._was_dp_gradients_called = False def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None): """DP version of superclass method.""" + self._was_dp_gradients_called = True # Compute loss. if not callable(loss) and tape is None: raise ValueError('`tape` is required when a `Tensor` loss is passed.') @@ -120,6 +122,7 @@ def make_keras_optimizer_class(cls): def get_gradients(self, loss, params): """DP version of superclass method.""" + self._was_dp_gradients_called = True if self._global_state is None: self._global_state = self._dp_sum_query.initial_global_state() @@ -156,6 +159,16 @@ def make_keras_optimizer_class(cls): return final_grads + def apply_gradients(self, grads_and_vars, global_step=None, name=None): + assert self._was_dp_gradients_called, ( + 'Neither _compute_gradients() or get_gradients() on the ' + 'differentially private optimizer was called. This means the ' + 'training is not differentially private. It may be the case that ' + 'you need to upgrade to TF 2.4 or higher to use this particular ' + 'optimizer.') + return super(DPOptimizerClass, + self).apply_gradients(grads_and_vars, global_step, name) + return DPOptimizerClass diff --git a/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras_test.py b/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras_test.py index 9f8dd90..77b7b6a 100644 --- a/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras_test.py +++ b/tensorflow_privacy/privacy/optimizers/dp_optimizer_keras_test.py @@ -135,6 +135,29 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase): self.assertNear( np.std(grads), l2_norm_clip * noise_multiplier / num_microbatches, 0.5) + @parameterized.named_parameters( + ('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), + ('DPAdagrad', dp_optimizer_keras.DPKerasAdagradOptimizer), + ('DPAdam', dp_optimizer_keras.DPKerasAdamOptimizer)) + def testAssertOnNoCallOfComputeGradients(self, cls): + """Tests that assertion fails when DP gradients are not computed.""" + opt = cls( + l2_norm_clip=100.0, + noise_multiplier=0.0, + num_microbatches=1, + learning_rate=2.0) + + with self.assertRaises(AssertionError): + grads_and_vars = tf.Variable([0.0]) + opt.apply_gradients(grads_and_vars) + + # Expect no exception if _compute_gradients is called. + var0 = tf.Variable([0.0]) + data0 = tf.Variable([[0.0]]) + loss = lambda: self._loss(data0, var0) + grads_and_vars = opt._compute_gradients(loss, [var0]) + opt.apply_gradients(grads_and_vars) + class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase): """Tests for get_gradient method. @@ -247,7 +270,8 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase): bias_value / global_norm, atol=0.001) - # Parameters for testing: optimizer, num_microbatches. + # Parameters for testing: optimizer, l2_norm_clip, noise_multiplier, + # num_microbatches. @parameterized.named_parameters( ('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0, 4.0, 1), @@ -285,6 +309,22 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase): np.std(kernel_value), l2_norm_clip * noise_multiplier / num_microbatches, 0.5) + @parameterized.named_parameters( + ('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), + ('DPAdagrad', dp_optimizer_keras.DPKerasAdagradOptimizer), + ('DPAdam', dp_optimizer_keras.DPKerasAdamOptimizer)) + def testAssertOnNoCallOfGetGradients(self, cls): + """Tests that assertion fails when DP gradients are not computed.""" + opt = cls( + l2_norm_clip=100.0, + noise_multiplier=0.0, + num_microbatches=1, + learning_rate=2.0) + + with self.assertRaises(AssertionError): + grads_and_vars = tf.Variable([0.0]) + opt.apply_gradients(grads_and_vars) + if __name__ == '__main__': tf.test.main()