Minor code cleanup to compute_dp_sgd_privacy_lib and update dp_accounting dependency.

PiperOrigin-RevId: 550695787
This commit is contained in:
Steve Chien 2023-07-24 15:47:57 -07:00 committed by A. Unique TensorFlower
parent c1c97f1c1c
commit 8e60864559
2 changed files with 24 additions and 37 deletions

View file

@ -15,9 +15,9 @@ git_repository(
tag = "0.5.0",
)
dp_lib_commit = "ab98ce4d4e41bf420198b2284a75d6a7dd4e9044"
dp_lib_tar_sha256 = "314d7b0938e6a6b425d449c219237f0367cb44f649b2614497799618f3b4660e"
dp_lib_url = "https://github.com/google/differential-privacy/archive/" + dp_lib_commit + ".tar.gz"
dp_lib_release = "2.1.0"
dp_lib_tar_sha256 = "b2e9afb2ea9337bb7c6302545b72e938707e8cdb3558ef38ce5cdd12fe2f182c"
dp_lib_url = "https://github.com/google/differential-privacy/archive/refs/tags/v" + dp_lib_release + ".tar.gz"
http_archive(
name = "com_google_differential_py",
@ -25,7 +25,7 @@ http_archive(
urls = [
dp_lib_url,
],
strip_prefix = "differential-privacy-" + dp_lib_commit + "/python",
strip_prefix = "differential-privacy-" + dp_lib_release + "/python",
)
# Load transitive dependencies of the DP accounting library.

View file

@ -14,6 +14,7 @@
# ==============================================================================
"""Library for computing privacy values for DP-SGD."""
import functools
import math
import textwrap
from typing import Optional
@ -107,21 +108,19 @@ def _compute_dp_sgd_user_privacy(
target_user_log_delta = math.log(user_delta)
# We store all example_eps computed for any example_delta in the following
# method. This is done so that we don't have to recompute values for the same
# delta.
epsilon_cache = dict()
def user_log_delta_gap(example_log_delta):
if example_log_delta not in epsilon_cache:
epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
# Cache example privacy values, which can be expensive.
@functools.cache
def get_example_eps(example_log_delta):
return _compute_dp_sgd_example_privacy(
num_epochs,
noise_multiplier,
math.exp(example_log_delta),
used_microbatching,
poisson_subsampling_probability,
)
example_eps = epsilon_cache[example_log_delta]
def user_log_delta_gap(example_log_delta):
example_eps = get_example_eps(example_log_delta)
# Estimate user_eps, user_log_delta using Vadhan Lemma 2.2, using a tighter
# bound seen in the penultimate line of the proof, given as
@ -153,7 +152,7 @@ def _compute_dp_sgd_user_privacy(
# because as example_delta decreases, example_eps increases. So it is
# possible for user_delta (which increases in both example_delta and
# example_eps) to diverge to infinity as example_delta goes to zero.
logging.warn(
logging.warning(
(
'No upper bound on user-level DP epsilon can be computed with %s '
'examples per user.'
@ -180,16 +179,7 @@ def _compute_dp_sgd_user_privacy(
)
# Vadhan (2017) "The complexity of differential privacy" Lemma 2.2.
if example_log_delta not in epsilon_cache:
epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
num_epochs,
noise_multiplier,
math.exp(example_log_delta),
used_microbatching,
poisson_subsampling_probability,
)
example_eps = epsilon_cache[example_log_delta]
return max_examples_per_user * example_eps
return max_examples_per_user * get_example_eps(example_log_delta)
def _compute_dp_sgd_example_privacy(
@ -238,14 +228,11 @@ def _compute_dp_sgd_example_privacy(
count = int(math.ceil(num_epochs))
event_ = dp_accounting.SelfComposedDpEvent(count=count, event=event_)
rdp_orders = (
[1 + x / 10.0 for x in range(1, 100)]
+ list(range(11, 64))
+ [128, 256, 512, 1024]
)
accountant = dp_accounting.rdp.RdpAccountant(rdp_orders) # TODO(b/271341062)
accountant.compose(event_)
return accountant.get_epsilon(example_delta)
return (
dp_accounting.rdp.RdpAccountant()
.compose(event_)
.get_epsilon(example_delta)
) # TODO(b/271341062)
def compute_dp_sgd_privacy_statement(
@ -432,7 +419,7 @@ def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
Returns:
A 2-tuple containing the value of epsilon and the optimal RDP order.
"""
logging.warn("""\
logging.warning("""\
`compute_dp_sgd_privacy` is deprecated. It does not account for doubling of \
sensitivity with microbatching, and assumes Poisson subsampling, which is \
rarely used in practice. Please use `compute_dp_sgd_privacy_statement`, which \