many fixes
This commit is contained in:
parent
fe90e3c596
commit
8e6bcf9b4a
6 changed files with 135 additions and 144 deletions
|
@ -20,7 +20,7 @@ if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
raise ImportError("Please upgrade your version "
|
raise ImportError("Please upgrade your version "
|
||||||
"of tensorflow from: {0} to at least 2.0.0 to "
|
"of tensorflow from: {0} to at least 2.0.0 to "
|
||||||
"use privacy/bolton".format(LooseVersion(tf.__version__)))
|
"use privacy/bolton".format(LooseVersion(tf.__version__)))
|
||||||
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
|
if hasattr(sys, "skip_tf_privacy_import"): # Useful for standalone scripts.
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
from privacy.bolton.models import BoltonModel
|
from privacy.bolton.models import BoltonModel
|
||||||
|
|
|
@ -11,7 +11,7 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Unit testing for losses.py"""
|
"""Unit testing for losses."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
|
@ -20,11 +20,11 @@ from __future__ import print_function
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
import sys
|
import sys
|
||||||
import tensorflow as tf
|
|
||||||
from tensorflow.python.keras import keras_parameterized
|
|
||||||
from tensorflow.python.framework import test_util
|
|
||||||
from tensorflow.python.keras.regularizers import L1L2
|
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.python.framework import test_util
|
||||||
|
from tensorflow.python.keras import keras_parameterized
|
||||||
|
from tensorflow.python.keras.regularizers import L1L2
|
||||||
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
|
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
|
||||||
from privacy.bolton.losses import StrongConvexHuber
|
from privacy.bolton.losses import StrongConvexHuber
|
||||||
from privacy.bolton.losses import StrongConvexMixin
|
from privacy.bolton.losses import StrongConvexMixin
|
||||||
|
@ -43,7 +43,7 @@ def captured_output():
|
||||||
|
|
||||||
|
|
||||||
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||||
"""Tests for the StrongConvexMixin"""
|
"""Tests for the StrongConvexMixin."""
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'beta not implemented',
|
{'testcase_name': 'beta not implemented',
|
||||||
'fn': 'beta',
|
'fn': 'beta',
|
||||||
|
@ -58,6 +58,7 @@ class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||||
'fn': 'radius',
|
'fn': 'radius',
|
||||||
'args': []},
|
'args': []},
|
||||||
])
|
])
|
||||||
|
|
||||||
def test_not_implemented(self, fn, args):
|
def test_not_implemented(self, fn, args):
|
||||||
"""Test that the given fn's are not implemented on the mixin.
|
"""Test that the given fn's are not implemented on the mixin.
|
||||||
|
|
||||||
|
@ -75,7 +76,7 @@ class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||||
'args': []},
|
'args': []},
|
||||||
])
|
])
|
||||||
def test_return_none(self, fn, args):
|
def test_return_none(self, fn, args):
|
||||||
"""Test that fn of Mixin returns None
|
"""Test that fn of Mixin returns None.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
fn: fn of Mixin to test
|
fn: fn of Mixin to test
|
||||||
|
@ -94,7 +95,7 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
'reg_lambda': 1,
|
'reg_lambda': 1,
|
||||||
'C': 1,
|
'C': 1,
|
||||||
'radius_constant': 1
|
'radius_constant': 1
|
||||||
}, # pylint: disable=invalid-name
|
}, # pylint: disable=invalid-name
|
||||||
])
|
])
|
||||||
def test_init_params(self, reg_lambda, C, radius_constant):
|
def test_init_params(self, reg_lambda, C, radius_constant):
|
||||||
"""Test initialization for given arguments.
|
"""Test initialization for given arguments.
|
||||||
|
@ -113,20 +114,20 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
'reg_lambda': 1,
|
'reg_lambda': 1,
|
||||||
'C': -1,
|
'C': -1,
|
||||||
'radius_constant': 1
|
'radius_constant': 1
|
||||||
},
|
},
|
||||||
{'testcase_name': 'negative radius',
|
{'testcase_name': 'negative radius',
|
||||||
'reg_lambda': 1,
|
'reg_lambda': 1,
|
||||||
'C': 1,
|
'C': 1,
|
||||||
'radius_constant': -1
|
'radius_constant': -1
|
||||||
},
|
},
|
||||||
{'testcase_name': 'negative lambda',
|
{'testcase_name': 'negative lambda',
|
||||||
'reg_lambda': -1,
|
'reg_lambda': -1,
|
||||||
'C': 1,
|
'C': 1,
|
||||||
'radius_constant': 1
|
'radius_constant': 1
|
||||||
}, # pylint: disable=invalid-name
|
}, # pylint: disable=invalid-name
|
||||||
])
|
])
|
||||||
def test_bad_init_params(self, reg_lambda, C, radius_constant):
|
def test_bad_init_params(self, reg_lambda, C, radius_constant):
|
||||||
"""Test invalid domain for given params. Should return ValueError
|
"""Test invalid domain for given params. Should return ValueError.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reg_lambda: initialization value for reg_lambda arg
|
reg_lambda: initialization value for reg_lambda arg
|
||||||
|
@ -149,20 +150,20 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
'logits': [-10000],
|
'logits': [-10000],
|
||||||
'y_true': [1],
|
'y_true': [1],
|
||||||
'result': 10000,
|
'result': 10000,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'positivee gradient positive logits',
|
{'testcase_name': 'positivee gradient positive logits',
|
||||||
'logits': [10000],
|
'logits': [10000],
|
||||||
'y_true': [0],
|
'y_true': [0],
|
||||||
'result': 10000,
|
'result': 10000,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'both negative',
|
{'testcase_name': 'both negative',
|
||||||
'logits': [-10000],
|
'logits': [-10000],
|
||||||
'y_true': [0],
|
'y_true': [0],
|
||||||
'result': 0
|
'result': 0
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_calculation(self, logits, y_true, result):
|
def test_calculation(self, logits, y_true, result):
|
||||||
"""Test the call method to ensure it returns the correct value
|
"""Test the call method to ensure it returns the correct value.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
logits: unscaled output of model
|
logits: unscaled output of model
|
||||||
|
@ -181,28 +182,28 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
'fn': 'beta',
|
'fn': 'beta',
|
||||||
'args': [1],
|
'args': [1],
|
||||||
'result': tf.constant(2, dtype=tf.float32)
|
'result': tf.constant(2, dtype=tf.float32)
|
||||||
},
|
},
|
||||||
{'testcase_name': 'gamma',
|
{'testcase_name': 'gamma',
|
||||||
'fn': 'gamma',
|
'fn': 'gamma',
|
||||||
'init_args': [1, 1, 1],
|
'init_args': [1, 1, 1],
|
||||||
'args': [],
|
'args': [],
|
||||||
'result': tf.constant(1, dtype=tf.float32),
|
'result': tf.constant(1, dtype=tf.float32),
|
||||||
},
|
},
|
||||||
{'testcase_name': 'lipchitz constant',
|
{'testcase_name': 'lipchitz constant',
|
||||||
'fn': 'lipchitz_constant',
|
'fn': 'lipchitz_constant',
|
||||||
'init_args': [1, 1, 1],
|
'init_args': [1, 1, 1],
|
||||||
'args': [1],
|
'args': [1],
|
||||||
'result': tf.constant(2, dtype=tf.float32),
|
'result': tf.constant(2, dtype=tf.float32),
|
||||||
},
|
},
|
||||||
{'testcase_name': 'kernel regularizer',
|
{'testcase_name': 'kernel regularizer',
|
||||||
'fn': 'kernel_regularizer',
|
'fn': 'kernel_regularizer',
|
||||||
'init_args': [1, 1, 1],
|
'init_args': [1, 1, 1],
|
||||||
'args': [],
|
'args': [],
|
||||||
'result': L1L2(l2=0.5),
|
'result': L1L2(l2=0.5),
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_fns(self, init_args, fn, args, result):
|
def test_fns(self, init_args, fn, args, result):
|
||||||
"""Test that fn of BinaryCrossentropy loss returns the correct result
|
"""Test that fn of BinaryCrossentropy loss returns the correct result.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
init_args: init values for loss instance
|
init_args: init values for loss instance
|
||||||
|
@ -226,7 +227,7 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
'fn': None,
|
'fn': None,
|
||||||
'args': None,
|
'args': None,
|
||||||
'print_res': 'The impact of label smoothing on privacy is unknown.'
|
'print_res': 'The impact of label smoothing on privacy is unknown.'
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_prints(self, init_args, fn, args, print_res):
|
def test_prints(self, init_args, fn, args, print_res):
|
||||||
"""Test logger warning from StrongConvexBinaryCrossentropy.
|
"""Test logger warning from StrongConvexBinaryCrossentropy.
|
||||||
|
@ -245,7 +246,7 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||||
|
|
||||||
|
|
||||||
class HuberTests(keras_parameterized.TestCase):
|
class HuberTests(keras_parameterized.TestCase):
|
||||||
"""tests for BinaryCrossesntropy StrongConvex loss"""
|
"""tests for BinaryCrossesntropy StrongConvex loss."""
|
||||||
|
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'normal',
|
{'testcase_name': 'normal',
|
||||||
|
@ -253,10 +254,10 @@ class HuberTests(keras_parameterized.TestCase):
|
||||||
'c': 1,
|
'c': 1,
|
||||||
'radius_constant': 1,
|
'radius_constant': 1,
|
||||||
'delta': 1,
|
'delta': 1,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_init_params(self, reg_lambda, c, radius_constant, delta):
|
def test_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||||
"""Test initialization for given arguments
|
"""Test initialization for given arguments.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reg_lambda: initialization value for reg_lambda arg
|
reg_lambda: initialization value for reg_lambda arg
|
||||||
|
@ -273,25 +274,25 @@ class HuberTests(keras_parameterized.TestCase):
|
||||||
'c': -1,
|
'c': -1,
|
||||||
'radius_constant': 1,
|
'radius_constant': 1,
|
||||||
'delta': 1
|
'delta': 1
|
||||||
},
|
},
|
||||||
{'testcase_name': 'negative radius',
|
{'testcase_name': 'negative radius',
|
||||||
'reg_lambda': 1,
|
'reg_lambda': 1,
|
||||||
'c': 1,
|
'c': 1,
|
||||||
'radius_constant': -1,
|
'radius_constant': -1,
|
||||||
'delta': 1
|
'delta': 1
|
||||||
},
|
},
|
||||||
{'testcase_name': 'negative lambda',
|
{'testcase_name': 'negative lambda',
|
||||||
'reg_lambda': -1,
|
'reg_lambda': -1,
|
||||||
'c': 1,
|
'c': 1,
|
||||||
'radius_constant': 1,
|
'radius_constant': 1,
|
||||||
'delta': 1
|
'delta': 1
|
||||||
},
|
},
|
||||||
{'testcase_name': 'negative delta',
|
{'testcase_name': 'negative delta',
|
||||||
'reg_lambda': 1,
|
'reg_lambda': 1,
|
||||||
'c': 1,
|
'c': 1,
|
||||||
'radius_constant': 1,
|
'radius_constant': 1,
|
||||||
'delta': -1
|
'delta': -1
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
|
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||||
"""Test invalid domain for given params. Should return ValueError
|
"""Test invalid domain for given params. Should return ValueError
|
||||||
|
@ -320,49 +321,49 @@ class HuberTests(keras_parameterized.TestCase):
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 1,
|
'delta': 1,
|
||||||
'result': 0.01*0.25,
|
'result': 0.01*0.25,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
|
{'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
|
||||||
'logits': 0.1,
|
'logits': 0.1,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 1,
|
'delta': 1,
|
||||||
'result': 1.9**2 * 0.25,
|
'result': 1.9**2 * 0.25,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
|
{'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
|
||||||
'logits': -0.1,
|
'logits': -0.1,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 1,
|
'delta': 1,
|
||||||
'result': 1.1,
|
'result': 1.1,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
|
{'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
|
||||||
'logits': 3.1,
|
'logits': 3.1,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 2,
|
'delta': 2,
|
||||||
'result': 0,
|
'result': 0,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
|
{'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
|
||||||
'logits': 2.9,
|
'logits': 2.9,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 2,
|
'delta': 2,
|
||||||
'result': 0.01*0.125,
|
'result': 0.01*0.125,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
|
{'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
|
||||||
'logits': 1.1,
|
'logits': 1.1,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 2,
|
'delta': 2,
|
||||||
'result': 1.9**2 * 0.125,
|
'result': 1.9**2 * 0.125,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
|
{'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
|
||||||
'logits': -1.1,
|
'logits': -1.1,
|
||||||
'y_true': 1,
|
'y_true': 1,
|
||||||
'delta': 2,
|
'delta': 2,
|
||||||
'result': 2.1,
|
'result': 2.1,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
|
{'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
|
||||||
'logits': -2.1,
|
'logits': -2.1,
|
||||||
'y_true': -1,
|
'y_true': -1,
|
||||||
'delta': 1,
|
'delta': 1,
|
||||||
'result': 0,
|
'result': 0,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_calculation(self, logits, y_true, delta, result):
|
def test_calculation(self, logits, y_true, delta, result):
|
||||||
"""Test the call method to ensure it returns the correct value
|
"""Test the call method to ensure it returns the correct value
|
||||||
|
@ -384,25 +385,25 @@ class HuberTests(keras_parameterized.TestCase):
|
||||||
'fn': 'beta',
|
'fn': 'beta',
|
||||||
'args': [1],
|
'args': [1],
|
||||||
'result': tf.Variable(1.5, dtype=tf.float32)
|
'result': tf.Variable(1.5, dtype=tf.float32)
|
||||||
},
|
},
|
||||||
{'testcase_name': 'gamma',
|
{'testcase_name': 'gamma',
|
||||||
'fn': 'gamma',
|
'fn': 'gamma',
|
||||||
'init_args': [1, 1, 1, 1],
|
'init_args': [1, 1, 1, 1],
|
||||||
'args': [],
|
'args': [],
|
||||||
'result': tf.Variable(1, dtype=tf.float32),
|
'result': tf.Variable(1, dtype=tf.float32),
|
||||||
},
|
},
|
||||||
{'testcase_name': 'lipchitz constant',
|
{'testcase_name': 'lipchitz constant',
|
||||||
'fn': 'lipchitz_constant',
|
'fn': 'lipchitz_constant',
|
||||||
'init_args': [1, 1, 1, 1],
|
'init_args': [1, 1, 1, 1],
|
||||||
'args': [1],
|
'args': [1],
|
||||||
'result': tf.Variable(2, dtype=tf.float32),
|
'result': tf.Variable(2, dtype=tf.float32),
|
||||||
},
|
},
|
||||||
{'testcase_name': 'kernel regularizer',
|
{'testcase_name': 'kernel regularizer',
|
||||||
'fn': 'kernel_regularizer',
|
'fn': 'kernel_regularizer',
|
||||||
'init_args': [1, 1, 1, 1],
|
'init_args': [1, 1, 1, 1],
|
||||||
'args': [],
|
'args': [],
|
||||||
'result': L1L2(l2=0.5),
|
'result': L1L2(l2=0.5),
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_fns(self, init_args, fn, args, result):
|
def test_fns(self, init_args, fn, args, result):
|
||||||
"""Test that fn of BinaryCrossentropy loss returns the correct result
|
"""Test that fn of BinaryCrossentropy loss returns the correct result
|
||||||
|
|
|
@ -11,15 +11,15 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Bolton model for bolton method of differentially private ML"""
|
"""Bolton model for bolton method of differentially private ML."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras.models import Model
|
|
||||||
from tensorflow.python.keras import optimizers
|
|
||||||
from tensorflow.python.framework import ops as _ops
|
from tensorflow.python.framework import ops as _ops
|
||||||
|
from tensorflow.python.keras import optimizers
|
||||||
|
from tensorflow.python.keras.models import Model
|
||||||
from privacy.bolton.losses import StrongConvexMixin
|
from privacy.bolton.losses import StrongConvexMixin
|
||||||
from privacy.bolton.optimizers import Bolton
|
from privacy.bolton.optimizers import Bolton
|
||||||
|
|
||||||
|
@ -44,9 +44,8 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
n_outputs,
|
n_outputs,
|
||||||
seed=1,
|
seed=1,
|
||||||
dtype=tf.float32
|
dtype=tf.float32):
|
||||||
):
|
"""Private constructor.
|
||||||
""" private constructor.
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
n_outputs: number of output classes to predict.
|
n_outputs: number of output classes to predict.
|
||||||
|
@ -64,7 +63,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
self._dtype = dtype
|
self._dtype = dtype
|
||||||
|
|
||||||
def call(self, inputs): # pylint: disable=arguments-differ
|
def call(self, inputs): # pylint: disable=arguments-differ
|
||||||
"""Forward pass of network
|
"""Forward pass of network.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
inputs: inputs to neural network
|
inputs: inputs to neural network
|
||||||
|
@ -111,8 +110,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
weighted_metrics=weighted_metrics,
|
weighted_metrics=weighted_metrics,
|
||||||
target_tensors=target_tensors,
|
target_tensors=target_tensors,
|
||||||
distribute=distribute,
|
distribute=distribute,
|
||||||
**kwargs
|
**kwargs)
|
||||||
)
|
|
||||||
|
|
||||||
def fit(self,
|
def fit(self,
|
||||||
x=None,
|
x=None,
|
||||||
|
@ -158,8 +156,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
data_size = None
|
data_size = None
|
||||||
batch_size_ = self._validate_or_infer_batch_size(batch_size,
|
batch_size_ = self._validate_or_infer_batch_size(batch_size,
|
||||||
steps_per_epoch,
|
steps_per_epoch,
|
||||||
x
|
x)
|
||||||
)
|
|
||||||
# inferring batch_size to be passed to optimizer. batch_size must remain its
|
# inferring batch_size to be passed to optimizer. batch_size must remain its
|
||||||
# initial value when passed to super().fit()
|
# initial value when passed to super().fit()
|
||||||
if batch_size_ is None:
|
if batch_size_ is None:
|
||||||
|
@ -173,15 +170,13 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
self.layers,
|
self.layers,
|
||||||
class_weight_,
|
class_weight_,
|
||||||
data_size,
|
data_size,
|
||||||
batch_size_,
|
batch_size_) as _:
|
||||||
) as _:
|
|
||||||
out = super(BoltonModel, self).fit(x=x,
|
out = super(BoltonModel, self).fit(x=x,
|
||||||
y=y,
|
y=y,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
class_weight=class_weight,
|
class_weight=class_weight,
|
||||||
steps_per_epoch=steps_per_epoch,
|
steps_per_epoch=steps_per_epoch,
|
||||||
**kwargs
|
**kwargs)
|
||||||
)
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def fit_generator(self,
|
def fit_generator(self,
|
||||||
|
@ -191,8 +186,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
epsilon=2,
|
epsilon=2,
|
||||||
n_samples=None,
|
n_samples=None,
|
||||||
steps_per_epoch=None,
|
steps_per_epoch=None,
|
||||||
**kwargs
|
**kwargs): # pylint: disable=arguments-differ
|
||||||
): # pylint: disable=arguments-differ
|
|
||||||
"""
|
"""
|
||||||
This method is the same as fit except for when the passed dataset
|
This method is the same as fit except for when the passed dataset
|
||||||
is a generator. See super method and fit for more details.
|
is a generator. See super method and fit for more details.
|
||||||
|
@ -218,28 +212,24 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
data_size = None
|
data_size = None
|
||||||
batch_size = self._validate_or_infer_batch_size(None,
|
batch_size = self._validate_or_infer_batch_size(None,
|
||||||
steps_per_epoch,
|
steps_per_epoch,
|
||||||
generator
|
generator)
|
||||||
)
|
|
||||||
with self.optimizer(noise_distribution,
|
with self.optimizer(noise_distribution,
|
||||||
epsilon,
|
epsilon,
|
||||||
self.layers,
|
self.layers,
|
||||||
class_weight,
|
class_weight,
|
||||||
data_size,
|
data_size,
|
||||||
batch_size
|
batch_size) as _:
|
||||||
) as _:
|
|
||||||
out = super(BoltonModel, self).fit_generator(
|
out = super(BoltonModel, self).fit_generator(
|
||||||
generator,
|
generator,
|
||||||
class_weight=class_weight,
|
class_weight=class_weight,
|
||||||
steps_per_epoch=steps_per_epoch,
|
steps_per_epoch=steps_per_epoch,
|
||||||
**kwargs
|
**kwargs)
|
||||||
)
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def calculate_class_weights(self,
|
def calculate_class_weights(self,
|
||||||
class_weights=None,
|
class_weights=None,
|
||||||
class_counts=None,
|
class_counts=None,
|
||||||
num_classes=None
|
num_classes=None):
|
||||||
):
|
|
||||||
"""Calculates class weighting to be used in training.
|
"""Calculates class weighting to be used in training.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -283,10 +273,8 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
elif is_string and class_weights == 'balanced':
|
elif is_string and class_weights == 'balanced':
|
||||||
num_samples = sum(class_counts)
|
num_samples = sum(class_counts)
|
||||||
weighted_counts = tf.dtypes.cast(tf.math.multiply(num_classes,
|
weighted_counts = tf.dtypes.cast(tf.math.multiply(num_classes,
|
||||||
class_counts,
|
class_counts),
|
||||||
),
|
self._dtype)
|
||||||
self._dtype
|
|
||||||
)
|
|
||||||
class_weights = tf.Variable(num_samples, dtype=self._dtype) / \
|
class_weights = tf.Variable(num_samples, dtype=self._dtype) / \
|
||||||
tf.Variable(weighted_counts, dtype=self._dtype)
|
tf.Variable(weighted_counts, dtype=self._dtype)
|
||||||
else:
|
else:
|
||||||
|
@ -298,7 +286,5 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Detected array length: {0} instead of: {1}".format(
|
"Detected array length: {0} instead of: {1}".format(
|
||||||
class_weights.shape[0],
|
class_weights.shape[0],
|
||||||
num_classes
|
num_classes))
|
||||||
)
|
|
||||||
)
|
|
||||||
return class_weights
|
return class_weights
|
||||||
|
|
|
@ -11,7 +11,7 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Unit testing for models.py"""
|
"""Unit testing for models."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
|
@ -29,8 +29,10 @@ from privacy.bolton import models
|
||||||
from privacy.bolton.optimizers import Bolton
|
from privacy.bolton.optimizers import Bolton
|
||||||
from privacy.bolton.losses import StrongConvexMixin
|
from privacy.bolton.losses import StrongConvexMixin
|
||||||
|
|
||||||
|
|
||||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
"""Test loss function for testing Bolton model"""
|
"""Test loss function for testing Bolton model."""
|
||||||
|
|
||||||
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
||||||
super(TestLoss, self).__init__(name=name)
|
super(TestLoss, self).__init__(name=name)
|
||||||
self.reg_lambda = reg_lambda
|
self.reg_lambda = reg_lambda
|
||||||
|
@ -103,6 +105,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
|
|
||||||
class TestOptimizer(OptimizerV2):
|
class TestOptimizer(OptimizerV2):
|
||||||
"""Test optimizer used for testing Bolton model"""
|
"""Test optimizer used for testing Bolton model"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(TestOptimizer, self).__init__('test')
|
super(TestOptimizer, self).__init__('test')
|
||||||
|
|
||||||
|
@ -128,10 +131,10 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'normal',
|
{'testcase_name': 'normal',
|
||||||
'n_outputs': 1,
|
'n_outputs': 1,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'many outputs',
|
{'testcase_name': 'many outputs',
|
||||||
'n_outputs': 100,
|
'n_outputs': 100,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_init_params(self, n_outputs):
|
def test_init_params(self, n_outputs):
|
||||||
"""Test initialization of BoltonModel.
|
"""Test initialization of BoltonModel.
|
||||||
|
@ -146,7 +149,7 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'invalid n_outputs',
|
{'testcase_name': 'invalid n_outputs',
|
||||||
'n_outputs': -1,
|
'n_outputs': -1,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_bad_init_params(self, n_outputs):
|
def test_bad_init_params(self, n_outputs):
|
||||||
"""test bad initializations of BoltonModel that should raise errors
|
"""test bad initializations of BoltonModel that should raise errors
|
||||||
|
@ -163,12 +166,12 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
'n_outputs': 1,
|
'n_outputs': 1,
|
||||||
'loss': TestLoss(1, 1, 1),
|
'loss': TestLoss(1, 1, 1),
|
||||||
'optimizer': 'adam',
|
'optimizer': 'adam',
|
||||||
},
|
},
|
||||||
{'testcase_name': 'test compile',
|
{'testcase_name': 'test compile',
|
||||||
'n_outputs': 100,
|
'n_outputs': 100,
|
||||||
'loss': TestLoss(1, 1, 1),
|
'loss': TestLoss(1, 1, 1),
|
||||||
'optimizer': TestOptimizer(),
|
'optimizer': TestOptimizer(),
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_compile(self, n_outputs, loss, optimizer):
|
def test_compile(self, n_outputs, loss, optimizer):
|
||||||
"""test compilation of BoltonModel
|
"""test compilation of BoltonModel
|
||||||
|
@ -189,12 +192,12 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
'n_outputs': 1,
|
'n_outputs': 1,
|
||||||
'loss': losses.BinaryCrossentropy(),
|
'loss': losses.BinaryCrossentropy(),
|
||||||
'optimizer': 'adam',
|
'optimizer': 'adam',
|
||||||
},
|
},
|
||||||
{'testcase_name': 'Not valid optimizer',
|
{'testcase_name': 'Not valid optimizer',
|
||||||
'n_outputs': 1,
|
'n_outputs': 1,
|
||||||
'loss': TestLoss(1, 1, 1),
|
'loss': TestLoss(1, 1, 1),
|
||||||
'optimizer': 'ada',
|
'optimizer': 'ada',
|
||||||
}
|
}
|
||||||
])
|
])
|
||||||
def test_bad_compile(self, n_outputs, loss, optimizer):
|
def test_bad_compile(self, n_outputs, loss, optimizer):
|
||||||
"""test bad compilations of BoltonModel that should raise errors
|
"""test bad compilations of BoltonModel that should raise errors
|
||||||
|
@ -293,8 +296,7 @@ def _do_fit(n_samples,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_samples=n_samples,
|
n_samples=n_samples,
|
||||||
noise_distribution=distribution,
|
noise_distribution=distribution,
|
||||||
epsilon=epsilon
|
epsilon=epsilon)
|
||||||
)
|
|
||||||
return clf
|
return clf
|
||||||
|
|
||||||
|
|
||||||
|
@ -306,19 +308,19 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
{'testcase_name': 'iterator fit',
|
{'testcase_name': 'iterator fit',
|
||||||
'generator': False,
|
'generator': False,
|
||||||
'reset_n_samples': True,
|
'reset_n_samples': True,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'iterator fit no samples',
|
{'testcase_name': 'iterator fit no samples',
|
||||||
'generator': False,
|
'generator': False,
|
||||||
'reset_n_samples': True,
|
'reset_n_samples': True,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'generator fit',
|
{'testcase_name': 'generator fit',
|
||||||
'generator': True,
|
'generator': True,
|
||||||
'reset_n_samples': False,
|
'reset_n_samples': False,
|
||||||
},
|
},
|
||||||
{'testcase_name': 'with callbacks',
|
{'testcase_name': 'with callbacks',
|
||||||
'generator': True,
|
'generator': True,
|
||||||
'reset_n_samples': False,
|
'reset_n_samples': False,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_fit(self, generator, reset_n_samples):
|
def test_fit(self, generator, reset_n_samples):
|
||||||
"""Tests fitting of BoltonModel
|
"""Tests fitting of BoltonModel
|
||||||
|
@ -350,7 +352,7 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'generator fit',
|
{'testcase_name': 'generator fit',
|
||||||
'generator': True,
|
'generator': True,
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_fit_gen(self, generator):
|
def test_fit_gen(self, generator):
|
||||||
"""Tests the fit_generator method of BoltonModel
|
"""Tests the fit_generator method of BoltonModel
|
||||||
|
@ -382,12 +384,12 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'generator': True,
|
'generator': True,
|
||||||
'reset_n_samples': True,
|
'reset_n_samples': True,
|
||||||
'distribution': 'laplace'
|
'distribution': 'laplace'
|
||||||
},
|
},
|
||||||
{'testcase_name': 'invalid distribution',
|
{'testcase_name': 'invalid distribution',
|
||||||
'generator': True,
|
'generator': True,
|
||||||
'reset_n_samples': True,
|
'reset_n_samples': True,
|
||||||
'distribution': 'not_valid'
|
'distribution': 'not_valid'
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_bad_fit(self, generator, reset_n_samples, distribution):
|
def test_bad_fit(self, generator, reset_n_samples, distribution):
|
||||||
"""Tests fitting with invalid parameters, which should raise an error
|
"""Tests fitting with invalid parameters, which should raise an error
|
||||||
|
@ -453,8 +455,7 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
clf = models.BoltonModel(1, 1)
|
clf = models.BoltonModel(1, 1)
|
||||||
expected = clf.calculate_class_weights(class_weights,
|
expected = clf.calculate_class_weights(class_weights,
|
||||||
class_counts,
|
class_counts,
|
||||||
num_classes
|
num_classes)
|
||||||
)
|
|
||||||
|
|
||||||
if hasattr(expected, 'numpy'):
|
if hasattr(expected, 'numpy'):
|
||||||
expected = expected.numpy()
|
expected = expected.numpy()
|
||||||
|
@ -467,13 +468,13 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'class_weights': 'not_valid',
|
'class_weights': 'not_valid',
|
||||||
'class_counts': 1,
|
'class_counts': 1,
|
||||||
'num_classes': 1,
|
'num_classes': 1,
|
||||||
'err_msg': "Detected string class_weights with value: not_valid"},
|
'err_msg': 'Detected string class_weights with value: not_valid'},
|
||||||
{'testcase_name': 'no class counts',
|
{'testcase_name': 'no class counts',
|
||||||
'class_weights': 'balanced',
|
'class_weights': 'balanced',
|
||||||
'class_counts': None,
|
'class_counts': None,
|
||||||
'num_classes': 1,
|
'num_classes': 1,
|
||||||
'err_msg': "Class counts must be provided if "
|
'err_msg': 'Class counts must be provided if '
|
||||||
"using class_weights=balanced"},
|
'using class_weights=balanced'},
|
||||||
{'testcase_name': 'no num classes',
|
{'testcase_name': 'no num classes',
|
||||||
'class_weights': 'balanced',
|
'class_weights': 'balanced',
|
||||||
'class_counts': [1],
|
'class_counts': [1],
|
||||||
|
@ -489,8 +490,8 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'class_weights': [1],
|
'class_weights': [1],
|
||||||
'class_counts': None,
|
'class_counts': None,
|
||||||
'num_classes': None,
|
'num_classes': None,
|
||||||
'err_msg': "You must pass a value for num_classes if "
|
'err_msg': 'You must pass a value for num_classes if '
|
||||||
"creating an array of class_weights"},
|
'creating an array of class_weights'},
|
||||||
{'testcase_name': 'class counts array, improper shape',
|
{'testcase_name': 'class counts array, improper shape',
|
||||||
'class_weights': [[1], [1]],
|
'class_weights': [[1], [1]],
|
||||||
'class_counts': None,
|
'class_counts': None,
|
||||||
|
@ -500,14 +501,13 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'class_weights': [1, 1, 1],
|
'class_weights': [1, 1, 1],
|
||||||
'class_counts': None,
|
'class_counts': None,
|
||||||
'num_classes': 2,
|
'num_classes': 2,
|
||||||
'err_msg': "Detected array length:"},
|
'err_msg': 'Detected array length:'},
|
||||||
])
|
])
|
||||||
def test_class_errors(self,
|
def test_class_errors(self,
|
||||||
class_weights,
|
class_weights,
|
||||||
class_counts,
|
class_counts,
|
||||||
num_classes,
|
num_classes,
|
||||||
err_msg
|
err_msg):
|
||||||
):
|
|
||||||
"""Tests the BOltonModel calculate_class_weights method with invalid params
|
"""Tests the BOltonModel calculate_class_weights method with invalid params
|
||||||
which should raise the expected errors.
|
which should raise the expected errors.
|
||||||
|
|
||||||
|
@ -521,8 +521,7 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||||
clf.calculate_class_weights(class_weights,
|
clf.calculate_class_weights(class_weights,
|
||||||
class_counts,
|
class_counts,
|
||||||
num_classes
|
num_classes)
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -11,29 +11,30 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Unit testing for optimizers.py"""
|
"""Unit testing for optimizers."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
from tensorflow.python.platform import test
|
|
||||||
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
|
|
||||||
from tensorflow.python.keras import keras_parameterized
|
|
||||||
from tensorflow.python.keras.regularizers import L1L2
|
|
||||||
from tensorflow.python.keras.initializers import constant
|
|
||||||
from tensorflow.python.keras import losses
|
|
||||||
from tensorflow.python.keras.models import Model
|
|
||||||
from tensorflow.python.framework import test_util
|
|
||||||
from tensorflow.python import ops as _ops
|
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
from privacy.bolton.losses import StrongConvexMixin
|
import tensorflow as tf
|
||||||
|
from tensorflow.python import ops as _ops
|
||||||
|
from tensorflow.python.framework import test_util
|
||||||
|
from tensorflow.python.keras import keras_parameterized
|
||||||
|
from tensorflow.python.keras import losses
|
||||||
|
from tensorflow.python.keras.initializers import constant
|
||||||
|
from tensorflow.python.keras.models import Model
|
||||||
|
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
|
||||||
|
from tensorflow.python.keras.regularizers import L1L2
|
||||||
|
from tensorflow.python.platform import test
|
||||||
from privacy.bolton import optimizers as opt
|
from privacy.bolton import optimizers as opt
|
||||||
|
from privacy.bolton.losses import StrongConvexMixin
|
||||||
|
|
||||||
|
|
||||||
class TestModel(Model): # pylint: disable=abstract-method
|
class TestModel(Model): # pylint: disable=abstract-method
|
||||||
"""Bolton episilon-delta model.
|
"""Bolton episilon-delta model.
|
||||||
|
|
||||||
Uses 4 key steps to achieve privacy guarantees:
|
Uses 4 key steps to achieve privacy guarantees:
|
||||||
1. Adds noise to weights after training (output perturbation).
|
1. Adds noise to weights after training (output perturbation).
|
||||||
2. Projects weights to R after each batch
|
2. Projects weights to R after each batch
|
||||||
|
@ -68,7 +69,8 @@ class TestModel(Model): # pylint: disable=abstract-method
|
||||||
|
|
||||||
|
|
||||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
"""Test loss function for testing Bolton model"""
|
"""Test loss function for testing Bolton model."""
|
||||||
|
|
||||||
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
||||||
super(TestLoss, self).__init__(name=name)
|
super(TestLoss, self).__init__(name=name)
|
||||||
self.reg_lambda = reg_lambda
|
self.reg_lambda = reg_lambda
|
||||||
|
@ -77,6 +79,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
|
|
||||||
def radius(self):
|
def radius(self):
|
||||||
"""Radius, R, of the hypothesis space W.
|
"""Radius, R, of the hypothesis space W.
|
||||||
|
|
||||||
W is a convex set that forms the hypothesis space.
|
W is a convex set that forms the hypothesis space.
|
||||||
|
|
||||||
Returns: radius
|
Returns: radius
|
||||||
|
@ -117,7 +120,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
)
|
)
|
||||||
|
|
||||||
def max_class_weight(self, class_weight, dtype=tf.float32):
|
def max_class_weight(self, class_weight, dtype=tf.float32):
|
||||||
"""the maximum weighting in class weights (max value) as a scalar tensor
|
"""the maximum weighting in class weights (max value) as a scalar tensor.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
class_weight: class weights used
|
class_weight: class weights used
|
||||||
|
@ -141,6 +144,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
|
|
||||||
class TestOptimizer(OptimizerV2):
|
class TestOptimizer(OptimizerV2):
|
||||||
"""Optimizer used for testing the Bolton optimizer"""
|
"""Optimizer used for testing the Bolton optimizer"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(TestOptimizer, self).__init__('test')
|
super(TestOptimizer, self).__init__('test')
|
||||||
self.not_private = 'test'
|
self.not_private = 'test'
|
||||||
|
@ -180,8 +184,9 @@ class TestOptimizer(OptimizerV2):
|
||||||
def limit_learning_rate(self):
|
def limit_learning_rate(self):
|
||||||
return 'test'
|
return 'test'
|
||||||
|
|
||||||
|
|
||||||
class BoltonOptimizerTest(keras_parameterized.TestCase):
|
class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
"""Bolton Optimizer tests"""
|
"""Bolton Optimizer tests."""
|
||||||
@test_util.run_all_in_graph_and_eager_modes
|
@test_util.run_all_in_graph_and_eager_modes
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'getattr',
|
{'testcase_name': 'getattr',
|
||||||
|
@ -195,6 +200,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
'result': None,
|
'result': None,
|
||||||
'test_attr': ''},
|
'test_attr': ''},
|
||||||
])
|
])
|
||||||
|
|
||||||
def test_fn(self, fn, args, result, test_attr):
|
def test_fn(self, fn, args, result, test_attr):
|
||||||
"""test that a fn of Bolton optimizer is working as expected.
|
"""test that a fn of Bolton optimizer is working as expected.
|
||||||
|
|
||||||
|
@ -294,7 +300,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
'class_weights': 1},
|
'class_weights': 1},
|
||||||
])
|
])
|
||||||
def test_context_manager(self, noise, epsilon, class_weights):
|
def test_context_manager(self, noise, epsilon, class_weights):
|
||||||
"""Tests the context manager functionality of the optimizer
|
"""Tests the context manager functionality of the optimizer.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
noise: noise distribution to pick
|
noise: noise distribution to pick
|
||||||
|
@ -327,7 +333,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon <inf'},
|
'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon <inf'},
|
||||||
])
|
])
|
||||||
def test_context_domains(self, noise, epsilon, err_msg):
|
def test_context_domains(self, noise, epsilon, err_msg):
|
||||||
"""
|
"""Tests the context domains.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
noise: noise distribution to pick
|
noise: noise distribution to pick
|
||||||
|
@ -408,7 +414,9 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
'args': [1, 1]},
|
'args': [1, 1]},
|
||||||
])
|
])
|
||||||
def test_rerouted_function(self, fn, args):
|
def test_rerouted_function(self, fn, args):
|
||||||
""" tests that a method of the internal optimizer is correctly routed from
|
"""Tests rerouted function.
|
||||||
|
|
||||||
|
Tests that a method of the internal optimizer is correctly routed from
|
||||||
the Bolton instance to the internal optimizer instance (TestOptimizer,
|
the Bolton instance to the internal optimizer instance (TestOptimizer,
|
||||||
here).
|
here).
|
||||||
|
|
||||||
|
@ -495,15 +503,14 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
internal_optimizer = TestOptimizer()
|
internal_optimizer = TestOptimizer()
|
||||||
optimizer = opt.Bolton(internal_optimizer, loss)
|
optimizer = opt.Bolton(internal_optimizer, loss)
|
||||||
self.assertEqual(getattr(optimizer, attr),
|
self.assertEqual(getattr(optimizer, attr),
|
||||||
getattr(internal_optimizer, attr)
|
getattr(internal_optimizer, attr))
|
||||||
)
|
|
||||||
|
|
||||||
@parameterized.named_parameters([
|
@parameterized.named_parameters([
|
||||||
{'testcase_name': 'attr does not exist',
|
{'testcase_name': 'attr does not exist',
|
||||||
'attr': '_not_valid'}
|
'attr': '_not_valid'}
|
||||||
])
|
])
|
||||||
def test_attribute_error(self, attr):
|
def test_attribute_error(self, attr):
|
||||||
""" test that attribute of internal optimizer is correctly rerouted to
|
"""Test that attribute of internal optimizer is correctly rerouted to
|
||||||
the internal optimizer
|
the internal optimizer
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -516,6 +523,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
with self.assertRaises(AttributeError):
|
with self.assertRaises(AttributeError):
|
||||||
getattr(optimizer, attr)
|
getattr(optimizer, attr)
|
||||||
|
|
||||||
|
|
||||||
class SchedulerTest(keras_parameterized.TestCase):
|
class SchedulerTest(keras_parameterized.TestCase):
|
||||||
"""GammaBeta Scheduler tests"""
|
"""GammaBeta Scheduler tests"""
|
||||||
|
|
||||||
|
@ -523,7 +531,7 @@ class SchedulerTest(keras_parameterized.TestCase):
|
||||||
{'testcase_name': 'not in context',
|
{'testcase_name': 'not in context',
|
||||||
'err_msg': 'Please initialize the GammaBetaDecreasingStep Learning Rate'
|
'err_msg': 'Please initialize the GammaBetaDecreasingStep Learning Rate'
|
||||||
' Scheduler'
|
' Scheduler'
|
||||||
}
|
}
|
||||||
])
|
])
|
||||||
def test_bad_call(self, err_msg):
|
def test_bad_call(self, err_msg):
|
||||||
""" test that attribute of internal optimizer is correctly rerouted to
|
""" test that attribute of internal optimizer is correctly rerouted to
|
||||||
|
|
|
@ -11,14 +11,11 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
"""Tutorial for bolton module, the model and the optimizer."""
|
"""Tutorial for bolton module, the model and the optimizer."""
|
||||||
import sys
|
|
||||||
|
|
||||||
sys.path.append('..')
|
|
||||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||||
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
||||||
from privacy.bolton import models # pylint: disable=wrong-import-position
|
from privacy.bolton import models # pylint: disable=wrong-import-position
|
||||||
|
from privacy.bolton.optimizers import Bolton # pylint: disable=wrong-import-position
|
||||||
# -------
|
# -------
|
||||||
# First, we will create a binary classification dataset with a single output
|
# First, we will create a binary classification dataset with a single output
|
||||||
# dimension. The samples for each label are repeated data points at different
|
# dimension. The samples for each label are repeated data points at different
|
||||||
|
@ -59,9 +56,9 @@ loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||||
# For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
|
# For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
|
||||||
# to be 1; these are all tunable and their impact can be read in losses.
|
# to be 1; these are all tunable and their impact can be read in losses.
|
||||||
# StrongConvexBinaryCrossentropy.We then compile the model with the chosen
|
# StrongConvexBinaryCrossentropy.We then compile the model with the chosen
|
||||||
# optimizer and loss, which will automatically wrap the chosen optimizer with the
|
# optimizer and loss, which will automatically wrap the chosen optimizer with
|
||||||
# Bolton Optimizer, ensuring the required components function as required for
|
# the Bolton Optimizer, ensuring the required components function as required
|
||||||
# privacy guarantees.
|
# for privacy guarantees.
|
||||||
# -------
|
# -------
|
||||||
bolt.compile(optimizer, loss)
|
bolt.compile(optimizer, loss)
|
||||||
# -------
|
# -------
|
||||||
|
@ -69,13 +66,13 @@ bolt.compile(optimizer, loss)
|
||||||
# the dataset and model.These parameters are:
|
# the dataset and model.These parameters are:
|
||||||
# 1. the class_weights used
|
# 1. the class_weights used
|
||||||
# 2. the number of samples in the dataset
|
# 2. the number of samples in the dataset
|
||||||
# 3. the batch size which the model will try to infer, if possible. If not, you
|
# 3. the batch size which the model will try to infer, if possible. If not,
|
||||||
# will be required to pass these explicitly to the fit method.
|
# you will be required to pass these explicitly to the fit method.
|
||||||
#
|
#
|
||||||
# As well, there are two privacy parameters than can be altered:
|
# As well, there are two privacy parameters than can be altered:
|
||||||
# 1. epsilon, a float
|
# 1. epsilon, a float
|
||||||
# 2. noise_distribution, a valid string indicating the distriution to use (must be
|
# 2. noise_distribution, a valid string indicating the distriution to use (must
|
||||||
# implemented)
|
# be implemented)
|
||||||
#
|
#
|
||||||
# The BoltonModel offers a helper method,.calculate_class_weight to aid in
|
# The BoltonModel offers a helper method,.calculate_class_weight to aid in
|
||||||
# class_weight calculation.
|
# class_weight calculation.
|
||||||
|
@ -117,8 +114,7 @@ try:
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_samples=n_samples,
|
n_samples=n_samples,
|
||||||
noise_distribution=noise_distribution,
|
noise_distribution=noise_distribution,
|
||||||
verbose=0
|
verbose=0)
|
||||||
)
|
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
print(e)
|
print(e)
|
||||||
# -------
|
# -------
|
||||||
|
@ -131,8 +127,7 @@ bolt.fit(generator,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_samples=n_samples,
|
n_samples=n_samples,
|
||||||
noise_distribution=noise_distribution,
|
noise_distribution=noise_distribution,
|
||||||
verbose=0
|
verbose=0)
|
||||||
)
|
|
||||||
# -------
|
# -------
|
||||||
# You don't have to use the bolton model to use the Bolton method.
|
# You don't have to use the bolton model to use the Bolton method.
|
||||||
# There are only a few requirements:
|
# There are only a few requirements:
|
||||||
|
@ -140,16 +135,18 @@ bolt.fit(generator,
|
||||||
# 2. instantiate the optimizer and use it as a context around the fit operation.
|
# 2. instantiate the optimizer and use it as a context around the fit operation.
|
||||||
# -------
|
# -------
|
||||||
# -------------------- Part 2, using the Optimizer
|
# -------------------- Part 2, using the Optimizer
|
||||||
from privacy.bolton.optimizers import Bolton # pylint: disable=wrong-import-position
|
|
||||||
# -------
|
# -------
|
||||||
# Here, we create our own model and setup the Bolton optimizer.
|
# Here, we create our own model and setup the Bolton optimizer.
|
||||||
# -------
|
# -------
|
||||||
|
|
||||||
|
|
||||||
class TestModel(tf.keras.Model): # pylint: disable=abstract-method
|
class TestModel(tf.keras.Model): # pylint: disable=abstract-method
|
||||||
|
|
||||||
def __init__(self, reg_layer, number_of_outputs=1):
|
def __init__(self, reg_layer, number_of_outputs=1):
|
||||||
super(TestModel, self).__init__(name='test')
|
super(TestModel, self).__init__(name='test')
|
||||||
self.output_layer = tf.keras.layers.Dense(number_of_outputs,
|
self.output_layer = tf.keras.layers.Dense(number_of_outputs,
|
||||||
kernel_regularizer=reg_layer
|
kernel_regularizer=reg_layer)
|
||||||
)
|
|
||||||
|
|
||||||
def call(self, inputs): # pylint: disable=arguments-differ
|
def call(self, inputs): # pylint: disable=arguments-differ
|
||||||
return self.output_layer(inputs)
|
return self.output_layer(inputs)
|
||||||
|
|
Loading…
Reference in a new issue