Fixing missing args.
This commit is contained in:
parent
0317ce8077
commit
92f97ae32c
3 changed files with 28 additions and 27 deletions
|
@ -76,18 +76,17 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
def compile(self,
|
||||
optimizer,
|
||||
loss,
|
||||
metrics=None,
|
||||
loss_weights=None,
|
||||
sample_weight_mode=None,
|
||||
weighted_metrics=None,
|
||||
target_tensors=None,
|
||||
distribute=None,
|
||||
kernel_initializer=tf.initializers.GlorotUniform,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""See super class. Default optimizer used in Bolton method is SGD.
|
||||
|
||||
Missing args.
|
||||
|
||||
Args:
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the Bolton Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
kwargs: kwargs to keras Model.compile. See super.
|
||||
"""
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
|
@ -104,15 +103,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
optimizer = optimizers.get(optimizer)
|
||||
optimizer = Bolton(optimizer, loss)
|
||||
|
||||
super(BoltonModel, self).compile(optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
distribute=distribute,
|
||||
**kwargs)
|
||||
super(BoltonModel, self).compile(optimizer, loss=loss, **kwargs)
|
||||
|
||||
def fit(self,
|
||||
x=None,
|
||||
|
|
|
@ -263,7 +263,12 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
def test_project(self, r, shape, n_out, init_value, result):
|
||||
"""test that a fn of Bolton optimizer is working as expected.
|
||||
|
||||
Missing args:
|
||||
Args:
|
||||
r: Radius value for StrongConvex loss function.
|
||||
shape: input_dimensionality
|
||||
n_out: output dimensionality
|
||||
init_value: the initial value for 'constant' kernel initializer
|
||||
result: the expected output after projection.fFF
|
||||
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
|
@ -536,7 +541,8 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
""" test that attribute of internal optimizer is correctly rerouted to
|
||||
the internal optimizer
|
||||
|
||||
Missing args
|
||||
Args:
|
||||
err_msg: The expected error message from the scheduler bad call.
|
||||
"""
|
||||
scheduler = opt.GammaBetaDecreasingStep()
|
||||
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
||||
|
@ -559,7 +565,9 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer
|
||||
|
||||
Missing Args:
|
||||
Args:
|
||||
step: step number to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
res: expected result from call to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
"""
|
||||
beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32)
|
||||
gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
|
|
@ -12,6 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tutorial for bolton module, the model and the optimizer."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
||||
|
|
Loading…
Reference in a new issue