Format TensorFlow Privacy files.
PiperOrigin-RevId: 424923635
This commit is contained in:
parent
07230a161a
commit
943ef91ee9
62 changed files with 1170 additions and 1087 deletions
|
@ -23,7 +23,6 @@ from tensorflow_docs.api_generator import generate_lib
|
|||
from tensorflow_docs.api_generator import public_api
|
||||
import tensorflow_privacy as tf_privacy
|
||||
|
||||
|
||||
flags.DEFINE_string('output_dir', '/tmp/tf_privacy',
|
||||
'Where to output the docs.')
|
||||
flags.DEFINE_string(
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
# Get Started
|
||||
|
||||
|
||||
This document assumes you are already familiar with differential privacy, and
|
||||
have determined that you would like to use TF Privacy to implement differential
|
||||
privacy guarantees in your model(s). If you’re not familiar with differential
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
import math
|
||||
|
||||
from absl import app
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
|
||||
|
@ -33,8 +32,10 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
|||
|
||||
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
|
||||
print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
|
||||
' over {} steps satisfies'.format(100 * q, sigma, steps), end=' ')
|
||||
print(
|
||||
'DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
|
||||
' over {} steps satisfies'.format(100 * q, sigma, steps),
|
||||
end=' ')
|
||||
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
|
||||
eps, delta))
|
||||
print('The optimal RDP order is {}.'.format(opt_order))
|
||||
|
|
|
@ -46,12 +46,13 @@ class ComputeDpSgdPrivacyTest(parameterized.TestCase):
|
|||
# the basis of this sanity check. This is confirmed in the above paper.
|
||||
q = batch_size / n
|
||||
steps = epochs * n / batch_size
|
||||
sigma = noise_multiplier * math.sqrt(steps) /q
|
||||
sigma = noise_multiplier * math.sqrt(steps) / q
|
||||
# We compute the optimal guarantee for Gaussian
|
||||
# using https://arxiv.org/abs/1805.06530 Theorem 8 (in v2).
|
||||
low_delta = .5*math.erfc((eps*sigma-.5/sigma)/math.sqrt(2))
|
||||
low_delta = .5 * math.erfc((eps * sigma - .5 / sigma) / math.sqrt(2))
|
||||
if eps < 100: # Skip this if it causes overflow; error is minor.
|
||||
low_delta -= math.exp(eps)*.5*math.erfc((eps*sigma+.5/sigma)/math.sqrt(2))
|
||||
low_delta -= math.exp(eps) * .5 * math.erfc(
|
||||
(eps * sigma + .5 / sigma) / math.sqrt(2))
|
||||
self.assertLessEqual(low_delta, delta)
|
||||
|
||||
|
||||
|
|
|
@ -52,8 +52,8 @@ def main(argv):
|
|||
assert FLAGS.batch_size is not None, 'Flag batch_size is missing.'
|
||||
assert FLAGS.epsilon is not None, 'Flag epsilon is missing.'
|
||||
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
|
||||
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon,
|
||||
FLAGS.epochs, FLAGS.delta, FLAGS.min_noise)
|
||||
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon, FLAGS.epochs,
|
||||
FLAGS.delta, FLAGS.min_noise)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -27,11 +27,12 @@ class ComputeNoiseFromBudgetTest(parameterized.TestCase):
|
|||
('Test2', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1e-5, 0.1),
|
||||
('Test3', 100000000, 1024, 5907984.81339406, 10, 1e-7, 1, 0),
|
||||
)
|
||||
def test_compute_noise(self, n, batch_size, target_epsilon, epochs,
|
||||
delta, min_noise, expected_noise):
|
||||
def test_compute_noise(self, n, batch_size, target_epsilon, epochs, delta,
|
||||
min_noise, expected_noise):
|
||||
target_noise = compute_noise_from_budget_lib.compute_noise(
|
||||
n, batch_size, target_epsilon, epochs, delta, min_noise)
|
||||
self.assertAlmostEqual(target_noise, expected_noise)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
||||
|
|
|
@ -176,4 +176,3 @@ class SampledWithoutReplacementDpEvent(DpEvent):
|
|||
source_dataset_size: int
|
||||
sample_size: int
|
||||
event: DpEvent
|
||||
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for DpEventBuilder."""
|
||||
|
||||
from absl.testing import absltest
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
|
@ -68,7 +67,8 @@ class DpEventBuilderTest(absltest.TestCase):
|
|||
expected_event = dp_event.ComposedDpEvent([
|
||||
_gaussian_event,
|
||||
dp_event.SelfComposedDpEvent(composed_event, 3),
|
||||
dp_event.SelfComposedDpEvent(_poisson_event, 2)])
|
||||
dp_event.SelfComposedDpEvent(_poisson_event, 2)
|
||||
])
|
||||
self.assertEqual(expected_event, builder.build())
|
||||
|
||||
|
||||
|
|
|
@ -84,13 +84,13 @@ class TensorBuffer(object):
|
|||
dtype=self._dtype,
|
||||
initializer=new_buffer,
|
||||
trainable=False)
|
||||
return self._buffer, tf.assign(
|
||||
self._capacity, tf.multiply(self._capacity, 2))
|
||||
return self._buffer, tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
else:
|
||||
return tf.assign(
|
||||
self._buffer, new_buffer,
|
||||
validate_shape=False), tf.assign(
|
||||
self._capacity, tf.multiply(self._capacity, 2))
|
||||
validate_shape=False), tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
|
||||
update_buffer, update_capacity = tf.cond(
|
||||
pred=tf.equal(self._current_size, self._capacity),
|
||||
|
|
|
@ -44,9 +44,8 @@ class TensorBufferTest(tf.test.TestCase):
|
|||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
tf.errors.InvalidArgumentError,
|
||||
'Appending value of inconsistent shape.'):
|
||||
with self.assertRaisesRegex(tf.errors.InvalidArgumentError,
|
||||
'Appending value of inconsistent shape.'):
|
||||
my_buffer.append(tf.ones(shape=[3, 4], dtype=tf.int32))
|
||||
|
||||
def test_resize(self):
|
||||
|
|
|
@ -187,5 +187,6 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
|
|||
tree_aggregation_accountant._compute_gaussian_zcdp(
|
||||
sigma, sum_sensitivity_square))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
|
@ -68,7 +68,6 @@ class StrongConvexMixin:
|
|||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns: L
|
||||
"""
|
||||
raise NotImplementedError("lipchitz constant not implemented for "
|
||||
|
@ -126,13 +125,10 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
if reg_lambda <= 0:
|
||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
if radius_constant <= 0:
|
||||
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||
radius_constant
|
||||
))
|
||||
raise ValueError(
|
||||
"radius_constant: {0}, should be >= 0".format(radius_constant))
|
||||
if delta <= 0:
|
||||
raise ValueError("delta: {0}, should be >= 0".format(
|
||||
delta
|
||||
))
|
||||
raise ValueError("delta: {0}, should be >= 0".format(delta))
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.delta = delta
|
||||
self.radius_constant = radius_constant
|
||||
|
@ -172,9 +168,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
def beta(self, class_weight):
|
||||
"""See super class."""
|
||||
max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
delta = _ops.convert_to_tensor_v2(self.delta,
|
||||
dtype=self.dtype
|
||||
)
|
||||
delta = _ops.convert_to_tensor_v2(self.delta, dtype=self.dtype)
|
||||
return self.C * max_class_weight / (delta *
|
||||
tf.constant(2, dtype=self.dtype)) + \
|
||||
self.reg_lambda
|
||||
|
@ -197,13 +191,11 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
The L2 regularizer layer for this loss function, with regularizer constant
|
||||
set to half the 0.5 * reg_lambda.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda/2)
|
||||
return L1L2(l2=self.reg_lambda / 2)
|
||||
|
||||
|
||||
class StrongConvexBinaryCrossentropy(
|
||||
losses.BinaryCrossentropy,
|
||||
StrongConvexMixin
|
||||
):
|
||||
class StrongConvexBinaryCrossentropy(losses.BinaryCrossentropy,
|
||||
StrongConvexMixin):
|
||||
"""Strongly Convex BinaryCrossentropy loss using l2 weight regularization."""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -222,10 +214,10 @@ class StrongConvexBinaryCrossentropy(
|
|||
radius_constant: constant defining the length of the radius
|
||||
from_logits: True if the input are unscaled logits. False if they are
|
||||
already scaled.
|
||||
label_smoothing: amount of smoothing to perform on labels
|
||||
relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the
|
||||
impact of this parameter's effect on privacy is not known and thus the
|
||||
default should be used.
|
||||
label_smoothing: amount of smoothing to perform on labels relaxation of
|
||||
trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the impact of this
|
||||
parameter's effect on privacy is not known and thus the default should
|
||||
be used.
|
||||
reduction: reduction type to use. See super class
|
||||
dtype: tf datatype to use for tensor conversions.
|
||||
"""
|
||||
|
@ -239,9 +231,8 @@ class StrongConvexBinaryCrossentropy(
|
|||
if c_arg <= 0:
|
||||
raise ValueError("c: {0}, should be >= 0".format(c_arg))
|
||||
if radius_constant <= 0:
|
||||
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||
radius_constant
|
||||
))
|
||||
raise ValueError(
|
||||
"radius_constant: {0}, should be >= 0".format(radius_constant))
|
||||
self.dtype = dtype
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
|
@ -294,4 +285,4 @@ class StrongConvexBinaryCrossentropy(
|
|||
The L2 regularizer layer for this loss function, with regularizer constant
|
||||
set to half the 0.5 * reg_lambda.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda/2)
|
||||
return L1L2(l2=self.reg_lambda / 2)
|
||||
|
|
|
@ -40,21 +40,29 @@ def captured_output():
|
|||
|
||||
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||
"""Tests for the StrongConvexMixin."""
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta not implemented',
|
||||
'fn': 'beta',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'gamma not implemented',
|
||||
'fn': 'gamma',
|
||||
'args': []},
|
||||
{'testcase_name': 'lipchitz not implemented',
|
||||
'fn': 'lipchitz_constant',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'radius not implemented',
|
||||
'fn': 'radius',
|
||||
'args': []},
|
||||
])
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{
|
||||
'testcase_name': 'beta not implemented',
|
||||
'fn': 'beta',
|
||||
'args': [1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'gamma not implemented',
|
||||
'fn': 'gamma',
|
||||
'args': []
|
||||
},
|
||||
{
|
||||
'testcase_name': 'lipchitz not implemented',
|
||||
'fn': 'lipchitz_constant',
|
||||
'args': [1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'radius not implemented',
|
||||
'fn': 'radius',
|
||||
'args': []
|
||||
},
|
||||
])
|
||||
def test_not_implemented(self, fn, args):
|
||||
"""Test that the given fn's are not implemented on the mixin.
|
||||
|
||||
|
@ -67,9 +75,11 @@ class StrongConvexMixinTests(keras_parameterized.TestCase):
|
|||
getattr(loss, fn, None)(*args)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'radius not implemented',
|
||||
'fn': 'kernel_regularizer',
|
||||
'args': []},
|
||||
{
|
||||
'testcase_name': 'radius not implemented',
|
||||
'fn': 'kernel_regularizer',
|
||||
'args': []
|
||||
},
|
||||
])
|
||||
def test_return_none(self, fn, args):
|
||||
"""Test that fn of Mixin returns None.
|
||||
|
@ -87,10 +97,11 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
"""tests for BinaryCrossesntropy StrongConvex loss."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
{
|
||||
'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
}, # pylint: disable=invalid-name
|
||||
])
|
||||
def test_init_params(self, reg_lambda, C, radius_constant):
|
||||
|
@ -106,24 +117,29 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
self.assertIsInstance(loss, StrongConvexBinaryCrossentropy)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'C': -1,
|
||||
'radius_constant': 1
|
||||
{
|
||||
'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'C': -1,
|
||||
'radius_constant': 1
|
||||
},
|
||||
{'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': -1
|
||||
{
|
||||
'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': -1
|
||||
},
|
||||
{'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
{
|
||||
'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
}, # pylint: disable=invalid-name
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, C, radius_constant):
|
||||
"""Test invalid domain for given params. Should return ValueError.
|
||||
"""Test invalid domain for given params.
|
||||
|
||||
Should return ValueError.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
|
@ -137,25 +153,29 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
# [] for compatibility with tensorflow loss calculation
|
||||
{'testcase_name': 'both positive',
|
||||
'logits': [10000],
|
||||
'y_true': [1],
|
||||
'result': 0,
|
||||
{
|
||||
'testcase_name': 'both positive',
|
||||
'logits': [10000],
|
||||
'y_true': [1],
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'positive gradient negative logits',
|
||||
'logits': [-10000],
|
||||
'y_true': [1],
|
||||
'result': 10000,
|
||||
{
|
||||
'testcase_name': 'positive gradient negative logits',
|
||||
'logits': [-10000],
|
||||
'y_true': [1],
|
||||
'result': 10000,
|
||||
},
|
||||
{'testcase_name': 'positivee gradient positive logits',
|
||||
'logits': [10000],
|
||||
'y_true': [0],
|
||||
'result': 10000,
|
||||
{
|
||||
'testcase_name': 'positivee gradient positive logits',
|
||||
'logits': [10000],
|
||||
'y_true': [0],
|
||||
'result': 10000,
|
||||
},
|
||||
{'testcase_name': 'both negative',
|
||||
'logits': [-10000],
|
||||
'y_true': [0],
|
||||
'result': 0
|
||||
{
|
||||
'testcase_name': 'both negative',
|
||||
'logits': [-10000],
|
||||
'y_true': [0],
|
||||
'result': 0
|
||||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, result):
|
||||
|
@ -173,29 +193,33 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
self.assertEqual(loss.numpy(), result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32)
|
||||
{
|
||||
'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32)
|
||||
},
|
||||
{'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.constant(1, dtype=tf.float32),
|
||||
{
|
||||
'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.constant(1, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32),
|
||||
{
|
||||
'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
{
|
||||
'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
|
@ -218,11 +242,12 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
self.assertEqual(expected, result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'label_smoothing',
|
||||
'init_args': [1, 1, 1, True, 0.1],
|
||||
'fn': None,
|
||||
'args': None,
|
||||
'print_res': 'The impact of label smoothing on privacy is unknown.'
|
||||
{
|
||||
'testcase_name': 'label_smoothing',
|
||||
'init_args': [1, 1, 1, True, 0.1],
|
||||
'fn': None,
|
||||
'args': None,
|
||||
'print_res': 'The impact of label smoothing on privacy is unknown.'
|
||||
},
|
||||
])
|
||||
def test_prints(self, init_args, fn, args, print_res):
|
||||
|
@ -245,11 +270,12 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
"""tests for BinaryCrossesntropy StrongConvex loss."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1,
|
||||
{
|
||||
'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1,
|
||||
},
|
||||
])
|
||||
def test_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
|
@ -266,33 +292,39 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
self.assertIsInstance(loss, StrongConvexHuber)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'c': -1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
{
|
||||
'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'c': -1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': -1,
|
||||
'delta': 1
|
||||
{
|
||||
'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': -1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
{
|
||||
'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative delta',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': -1
|
||||
{
|
||||
'testcase_name': 'negative delta',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': -1
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
"""Test invalid domain for given params. Should return ValueError.
|
||||
"""Test invalid domain for given params.
|
||||
|
||||
Should return ValueError.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
|
@ -307,59 +339,68 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
# test the bounds and test varied delta's
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary',
|
||||
'logits': 2.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
{
|
||||
'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary',
|
||||
'logits': 2.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary',
|
||||
'logits': 1.9,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0.01*0.25,
|
||||
{
|
||||
'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary',
|
||||
'logits': 1.9,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0.01 * 0.25,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
|
||||
'logits': 0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.9**2 * 0.25,
|
||||
{
|
||||
'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
|
||||
'logits': 0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.9**2 * 0.25,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.1,
|
||||
{
|
||||
'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.1,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
|
||||
'logits': 3.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0,
|
||||
{
|
||||
'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
|
||||
'logits': 3.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
|
||||
'logits': 2.9,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0.01*0.125,
|
||||
{
|
||||
'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
|
||||
'logits': 2.9,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0.01 * 0.125,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
|
||||
'logits': 1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 1.9**2 * 0.125,
|
||||
{
|
||||
'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
|
||||
'logits': 1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 1.9**2 * 0.125,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 2.1,
|
||||
{
|
||||
'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 2.1,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
|
||||
'logits': -2.1,
|
||||
'y_true': -1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
{
|
||||
'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
|
||||
'logits': -2.1,
|
||||
'y_true': -1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, delta, result):
|
||||
|
@ -378,29 +419,33 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
self.assertAllClose(loss.numpy(), result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.Variable(1.5, dtype=tf.float32)
|
||||
{
|
||||
'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.Variable(1.5, dtype=tf.float32)
|
||||
},
|
||||
{'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.Variable(1, dtype=tf.float32),
|
||||
{
|
||||
'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.Variable(1, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.Variable(2, dtype=tf.float32),
|
||||
{
|
||||
'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.Variable(2, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
{
|
||||
'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
|
|
|
@ -38,10 +38,7 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
Descent-based Analytics by Xi Wu et al.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_outputs,
|
||||
seed=1,
|
||||
dtype=tf.float32):
|
||||
def __init__(self, n_outputs, seed=1, dtype=tf.float32):
|
||||
"""Private constructor.
|
||||
|
||||
Args:
|
||||
|
@ -51,9 +48,8 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
"""
|
||||
super(BoltOnModel, self).__init__(name='bolton', dynamic=False)
|
||||
if n_outputs <= 0:
|
||||
raise ValueError('n_outputs = {0} is not valid. Must be > 0.'.format(
|
||||
n_outputs
|
||||
))
|
||||
raise ValueError(
|
||||
'n_outputs = {0} is not valid. Must be > 0.'.format(n_outputs))
|
||||
self.n_outputs = n_outputs
|
||||
self.seed = seed
|
||||
self._layers_instantiated = False
|
||||
|
@ -76,11 +72,13 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
loss,
|
||||
kernel_initializer=tf.initializers.GlorotUniform,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""See super class. Default optimizer used in BoltOn method is SGD.
|
||||
"""See super class.
|
||||
|
||||
Default optimizer used in BoltOn method is SGD.
|
||||
|
||||
Args:
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the BoltOn Optimizer.
|
||||
optimizer: The optimizer to use. This will be automatically wrapped with
|
||||
the BoltOn Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
|
@ -128,10 +126,10 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
y: Labels to fit on, see super.
|
||||
batch_size: The batch size to use for training, see super.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
whose dim == n_classes.
|
||||
n_samples: the number of individual samples in x.
|
||||
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||
See the bolt-on paper for more description.
|
||||
See the bolt-on paper for more description.
|
||||
noise_distribution: the distribution to pull noise from.
|
||||
steps_per_epoch:
|
||||
**kwargs: kwargs to keras Model.fit. See super.
|
||||
|
@ -152,8 +150,7 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
else:
|
||||
data_size = None
|
||||
batch_size_ = self._validate_or_infer_batch_size(batch_size,
|
||||
steps_per_epoch,
|
||||
x)
|
||||
steps_per_epoch, x)
|
||||
if batch_size_ is None:
|
||||
batch_size_ = 32
|
||||
# inferring batch_size to be passed to optimizer. batch_size must remain its
|
||||
|
@ -164,18 +161,15 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
if data_size is None:
|
||||
raise ValueError('Could not infer the number of samples. Please pass '
|
||||
'this in using n_samples.')
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight_,
|
||||
data_size,
|
||||
batch_size_) as _:
|
||||
out = super(BoltOnModel, self).fit(x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
class_weight=class_weight,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
**kwargs)
|
||||
with self.optimizer(noise_distribution, epsilon, self.layers, class_weight_,
|
||||
data_size, batch_size_) as _:
|
||||
out = super(BoltOnModel, self).fit(
|
||||
x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
class_weight=class_weight,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
**kwargs)
|
||||
return out
|
||||
|
||||
def fit_generator(self,
|
||||
|
@ -194,10 +188,10 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
Args:
|
||||
generator: Inputs generator following Tensorflow guidelines, see super.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
whose dim == n_classes.
|
||||
noise_distribution: the distribution to get noise from.
|
||||
epsilon: privacy parameter, which trades off utility and privacy. See
|
||||
BoltOn paper for more description.
|
||||
BoltOn paper for more description.
|
||||
n_samples: number of individual samples in x
|
||||
steps_per_epoch: Number of steps per training epoch, see super.
|
||||
**kwargs: **kwargs
|
||||
|
@ -222,12 +216,8 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
generator)
|
||||
if batch_size is None:
|
||||
batch_size = 32
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight,
|
||||
data_size,
|
||||
batch_size) as _:
|
||||
with self.optimizer(noise_distribution, epsilon, self.layers, class_weight,
|
||||
data_size, batch_size) as _:
|
||||
out = super(BoltOnModel, self).fit_generator(
|
||||
generator,
|
||||
class_weight=class_weight,
|
||||
|
@ -243,10 +233,10 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
|
||||
Args:
|
||||
class_weights: str specifying type, array giving weights, or None.
|
||||
class_counts: If class_weights is not None, then an array of
|
||||
the number of samples for each class
|
||||
num_classes: If class_weights is not None, then the number of
|
||||
classes.
|
||||
class_counts: If class_weights is not None, then an array of the number of
|
||||
samples for each class
|
||||
num_classes: If class_weights is not None, then the number of classes.
|
||||
|
||||
Returns:
|
||||
class_weights as 1D tensor, to be passed to model's fit method.
|
||||
"""
|
||||
|
@ -259,14 +249,12 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
raise ValueError('Detected string class_weights with '
|
||||
'value: {0}, which is not one of {1}.'
|
||||
'Please select a valid class_weight type'
|
||||
'or pass an array'.format(class_weights,
|
||||
class_keys))
|
||||
'or pass an array'.format(class_weights, class_keys))
|
||||
if class_counts is None:
|
||||
raise ValueError('Class counts must be provided if using '
|
||||
'class_weights=%s' % class_weights)
|
||||
class_counts_shape = tf.Variable(class_counts,
|
||||
trainable=False,
|
||||
dtype=self._dtype).shape
|
||||
class_counts_shape = tf.Variable(
|
||||
class_counts, trainable=False, dtype=self._dtype).shape
|
||||
if len(class_counts_shape) != 1:
|
||||
raise ValueError('class counts must be a 1D array.'
|
||||
'Detected: {0}'.format(class_counts_shape))
|
||||
|
@ -282,9 +270,8 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
class_weights = 1
|
||||
elif is_string and class_weights == 'balanced':
|
||||
num_samples = sum(class_counts)
|
||||
weighted_counts = tf.dtypes.cast(tf.math.multiply(num_classes,
|
||||
class_counts),
|
||||
self._dtype)
|
||||
weighted_counts = tf.dtypes.cast(
|
||||
tf.math.multiply(num_classes, class_counts), self._dtype)
|
||||
class_weights = tf.Variable(num_samples, dtype=self._dtype) / \
|
||||
tf.Variable(weighted_counts, dtype=self._dtype)
|
||||
else:
|
||||
|
@ -293,8 +280,6 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
raise ValueError('Detected class_weights shape: {0} instead of '
|
||||
'1D array'.format(class_weights.shape))
|
||||
if class_weights.shape[0] != num_classes:
|
||||
raise ValueError(
|
||||
'Detected array length: {0} instead of: {1}'.format(
|
||||
class_weights.shape[0],
|
||||
num_classes))
|
||||
raise ValueError('Detected array length: {0} instead of: {1}'.format(
|
||||
class_weights.shape[0], num_classes))
|
||||
return class_weights
|
||||
|
|
|
@ -73,9 +73,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
|||
def call(self, y_true, y_pred):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(
|
||||
tf.math.squared_difference(y_true, y_pred),
|
||||
axis=1
|
||||
)
|
||||
tf.math.squared_difference(y_true, y_pred), axis=1)
|
||||
|
||||
def max_class_weight(self, class_weight):
|
||||
"""the maximum weighting in class weights (max value) as a scalar tensor.
|
||||
|
@ -125,11 +123,13 @@ class InitTests(keras_parameterized.TestCase):
|
|||
"""Tests for keras model initialization."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'n_outputs': 1,
|
||||
{
|
||||
'testcase_name': 'normal',
|
||||
'n_outputs': 1,
|
||||
},
|
||||
{'testcase_name': 'many outputs',
|
||||
'n_outputs': 100,
|
||||
{
|
||||
'testcase_name': 'many outputs',
|
||||
'n_outputs': 100,
|
||||
},
|
||||
])
|
||||
def test_init_params(self, n_outputs):
|
||||
|
@ -143,8 +143,9 @@ class InitTests(keras_parameterized.TestCase):
|
|||
self.assertIsInstance(clf, models.BoltOnModel)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid n_outputs',
|
||||
'n_outputs': -1,
|
||||
{
|
||||
'testcase_name': 'invalid n_outputs',
|
||||
'n_outputs': -1,
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(self, n_outputs):
|
||||
|
@ -158,15 +159,17 @@ class InitTests(keras_parameterized.TestCase):
|
|||
models.BoltOnModel(n_outputs)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'string compile',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'adam',
|
||||
{
|
||||
'testcase_name': 'string compile',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'test compile',
|
||||
'n_outputs': 100,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': TestOptimizer(),
|
||||
{
|
||||
'testcase_name': 'test compile',
|
||||
'n_outputs': 100,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': TestOptimizer(),
|
||||
},
|
||||
])
|
||||
def test_compile(self, n_outputs, loss, optimizer):
|
||||
|
@ -183,18 +186,17 @@ class InitTests(keras_parameterized.TestCase):
|
|||
clf.compile(optimizer, loss)
|
||||
self.assertEqual(clf.loss, loss)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'Not strong loss',
|
||||
'n_outputs': 1,
|
||||
'loss': losses.BinaryCrossentropy(),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'Not valid optimizer',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'ada',
|
||||
}
|
||||
])
|
||||
@parameterized.named_parameters([{
|
||||
'testcase_name': 'Not strong loss',
|
||||
'n_outputs': 1,
|
||||
'loss': losses.BinaryCrossentropy(),
|
||||
'optimizer': 'adam',
|
||||
}, {
|
||||
'testcase_name': 'Not valid optimizer',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'ada',
|
||||
}])
|
||||
def test_bad_compile(self, n_outputs, loss, optimizer):
|
||||
"""test bad compilations of BoltOnModel that should raise errors.
|
||||
|
||||
|
@ -231,17 +233,11 @@ def _cat_dataset(n_samples, input_dim, n_classes, batch_size, generator=False):
|
|||
x_stack = []
|
||||
y_stack = []
|
||||
for i_class in range(n_classes):
|
||||
x_stack.append(
|
||||
tf.constant(1*i_class, tf.float32, (n_samples, input_dim))
|
||||
)
|
||||
y_stack.append(
|
||||
tf.constant(i_class, tf.float32, (n_samples, n_classes))
|
||||
)
|
||||
x_stack.append(tf.constant(1 * i_class, tf.float32, (n_samples, input_dim)))
|
||||
y_stack.append(tf.constant(i_class, tf.float32, (n_samples, n_classes)))
|
||||
x_set, y_set = tf.stack(x_stack), tf.stack(y_stack)
|
||||
if generator:
|
||||
dataset = tf.data.Dataset.from_tensor_slices(
|
||||
(x_set, y_set)
|
||||
)
|
||||
dataset = tf.data.Dataset.from_tensor_slices((x_set, y_set))
|
||||
dataset = dataset.batch(batch_size=batch_size)
|
||||
return dataset
|
||||
return x_set, y_set
|
||||
|
@ -266,8 +262,8 @@ def _do_fit(n_samples,
|
|||
epsilon: privacy parameter
|
||||
generator: True to create a generator, False to use an iterator
|
||||
batch_size: batch_size to use
|
||||
reset_n_samples: True to set _samples to None prior to fitting.
|
||||
False does nothing
|
||||
reset_n_samples: True to set _samples to None prior to fitting. False does
|
||||
nothing
|
||||
optimizer: instance of TestOptimizer
|
||||
loss: instance of TestLoss
|
||||
distribution: distribution to get noise from.
|
||||
|
@ -279,37 +275,30 @@ def _do_fit(n_samples,
|
|||
clf.compile(optimizer, loss)
|
||||
if generator:
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_outputs,
|
||||
batch_size,
|
||||
generator=generator
|
||||
)
|
||||
n_samples, input_dim, n_outputs, batch_size, generator=generator)
|
||||
y = None
|
||||
# x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples//2)
|
||||
x = x.shuffle(n_samples // 2)
|
||||
batch_size = None
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit_generator(x,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
clf.fit_generator(
|
||||
x,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
else:
|
||||
x, y = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_outputs,
|
||||
batch_size,
|
||||
generator=generator)
|
||||
n_samples, input_dim, n_outputs, batch_size, generator=generator)
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit(x,
|
||||
y,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
clf.fit(
|
||||
x,
|
||||
y,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
return clf
|
||||
|
||||
|
||||
|
@ -318,21 +307,25 @@ class FitTests(keras_parameterized.TestCase):
|
|||
|
||||
# @test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator fit',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
{
|
||||
'testcase_name': 'iterator fit',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
},
|
||||
{'testcase_name': 'iterator fit no samples',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
{
|
||||
'testcase_name': 'iterator fit no samples',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
},
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
{
|
||||
'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
},
|
||||
{'testcase_name': 'with callbacks',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
{
|
||||
'testcase_name': 'with callbacks',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
},
|
||||
])
|
||||
def test_fit(self, generator, reset_n_samples):
|
||||
|
@ -363,8 +356,9 @@ class FitTests(keras_parameterized.TestCase):
|
|||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
{
|
||||
'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
},
|
||||
])
|
||||
def test_fit_gen(self, generator):
|
||||
|
@ -382,27 +376,24 @@ class FitTests(keras_parameterized.TestCase):
|
|||
clf = models.BoltOnModel(n_classes)
|
||||
clf.compile(optimizer, loss)
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
batch_size,
|
||||
generator=generator
|
||||
)
|
||||
n_samples, input_dim, n_classes, batch_size, generator=generator)
|
||||
x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples // 2)
|
||||
clf.fit_generator(x, n_samples=n_samples)
|
||||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator no n_samples',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'laplace'
|
||||
{
|
||||
'testcase_name': 'iterator no n_samples',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'laplace'
|
||||
},
|
||||
{'testcase_name': 'invalid distribution',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'not_valid'
|
||||
{
|
||||
'testcase_name': 'invalid distribution',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'not_valid'
|
||||
},
|
||||
])
|
||||
def test_bad_fit(self, generator, reset_n_samples, distribution):
|
||||
|
@ -422,40 +413,33 @@ class FitTests(keras_parameterized.TestCase):
|
|||
epsilon = 1
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
_do_fit(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
distribution
|
||||
)
|
||||
_do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size,
|
||||
reset_n_samples, optimizer, loss, distribution)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'None class_weights',
|
||||
'class_weights': None,
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'result': 1},
|
||||
{'testcase_name': 'class weights array',
|
||||
'class_weights': [1, 1],
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{'testcase_name': 'class weights balanced',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{
|
||||
'testcase_name': 'None class_weights',
|
||||
'class_weights': None,
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'result': 1
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class weights array',
|
||||
'class_weights': [1, 1],
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class weights balanced',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]
|
||||
},
|
||||
])
|
||||
def test_class_calculate(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
def test_class_calculate(self, class_weights, class_counts, num_classes,
|
||||
result):
|
||||
"""Tests the BOltonModel calculate_class_weights method.
|
||||
|
||||
|
@ -466,61 +450,68 @@ class FitTests(keras_parameterized.TestCase):
|
|||
result: expected result
|
||||
"""
|
||||
clf = models.BoltOnModel(1, 1)
|
||||
expected = clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
expected = clf.calculate_class_weights(class_weights, class_counts,
|
||||
num_classes)
|
||||
|
||||
if hasattr(expected, 'numpy'):
|
||||
expected = expected.numpy()
|
||||
self.assertAllEqual(
|
||||
expected,
|
||||
result
|
||||
)
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'class weight not valid str',
|
||||
'class_weights': 'not_valid',
|
||||
'class_counts': 1,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Detected string class_weights with value: not_valid'},
|
||||
{'testcase_name': 'no class counts',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': None,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Class counts must be provided if '
|
||||
'using class_weights=balanced'},
|
||||
{'testcase_name': 'no num classes',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1],
|
||||
'num_classes': None,
|
||||
'err_msg': 'num_classes must be provided if '
|
||||
'using class_weights=balanced'},
|
||||
{'testcase_name': 'class counts not array',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': 1,
|
||||
'num_classes': None,
|
||||
'err_msg': 'class counts must be a 1D array.'},
|
||||
{'testcase_name': 'class counts array, no num classes',
|
||||
'class_weights': [1],
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'err_msg': 'You must pass a value for num_classes if '
|
||||
'creating an array of class_weights'},
|
||||
{'testcase_name': 'class counts array, improper shape',
|
||||
'class_weights': [[1], [1]],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected class_weights shape'},
|
||||
{'testcase_name': 'class counts array, wrong number classes',
|
||||
'class_weights': [1, 1, 1],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected array length:'},
|
||||
])
|
||||
self.assertAllEqual(expected, result)
|
||||
|
||||
def test_class_errors(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
@parameterized.named_parameters([
|
||||
{
|
||||
'testcase_name': 'class weight not valid str',
|
||||
'class_weights': 'not_valid',
|
||||
'class_counts': 1,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Detected string class_weights with value: not_valid'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'no class counts',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': None,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Class counts must be provided if '
|
||||
'using class_weights=balanced'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'no num classes',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1],
|
||||
'num_classes': None,
|
||||
'err_msg': 'num_classes must be provided if '
|
||||
'using class_weights=balanced'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class counts not array',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': 1,
|
||||
'num_classes': None,
|
||||
'err_msg': 'class counts must be a 1D array.'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class counts array, no num classes',
|
||||
'class_weights': [1],
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'err_msg': 'You must pass a value for num_classes if '
|
||||
'creating an array of class_weights'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class counts array, improper shape',
|
||||
'class_weights': [[1], [1]],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected class_weights shape'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'class counts array, wrong number classes',
|
||||
'class_weights': [1, 1, 1],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected array length:'
|
||||
},
|
||||
])
|
||||
def test_class_errors(self, class_weights, class_counts, num_classes,
|
||||
err_msg):
|
||||
"""Tests the BOltonModel calculate_class_weights method.
|
||||
|
||||
|
@ -534,9 +525,7 @@ class FitTests(keras_parameterized.TestCase):
|
|||
"""
|
||||
clf = models.BoltOnModel(1, 1)
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
num_classes)
|
||||
clf.calculate_class_weights(class_weights, class_counts, num_classes)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -48,14 +48,12 @@ class GammaBetaDecreasingStep(
|
|||
'This is performed automatically by using the '
|
||||
'{1} as a context manager, '
|
||||
'as desired'.format(self.__class__.__name__,
|
||||
BoltOn.__class__.__name__
|
||||
)
|
||||
)
|
||||
BoltOn.__class__.__name__))
|
||||
dtype = self.beta.dtype
|
||||
one = tf.constant(1, dtype)
|
||||
return tf.math.minimum(tf.math.reduce_min(one/self.beta),
|
||||
one/(self.gamma*math_ops.cast(step, dtype))
|
||||
)
|
||||
return tf.math.minimum(
|
||||
tf.math.reduce_min(one / self.beta),
|
||||
one / (self.gamma * math_ops.cast(step, dtype)))
|
||||
|
||||
def get_config(self):
|
||||
"""Return config to setup the learning rate scheduler."""
|
||||
|
@ -108,16 +106,16 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def __init__(self, # pylint: disable=super-init-not-called
|
||||
optimizer,
|
||||
loss,
|
||||
dtype=tf.float32,
|
||||
):
|
||||
def __init__(
|
||||
self, # pylint: disable=super-init-not-called
|
||||
optimizer,
|
||||
loss,
|
||||
dtype=tf.float32,
|
||||
):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
optimizer: Optimizer_v2 or subclass to be used as the optimizer
|
||||
(wrapped).
|
||||
optimizer: Optimizer_v2 or subclass to be used as the optimizer (wrapped).
|
||||
loss: StrongConvexLoss function that the model is being compiled with.
|
||||
dtype: dtype
|
||||
"""
|
||||
|
@ -155,8 +153,8 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
"""Normalize the weights to the R-ball.
|
||||
|
||||
Args:
|
||||
force: True to normalize regardless of previous weight values.
|
||||
False to check if weights > R-ball and only normalize then.
|
||||
force: True to normalize regardless of previous weight values. False to
|
||||
check if weights > R-ball and only normalize then.
|
||||
|
||||
Raises:
|
||||
Exception: If not called from inside this optimizer context.
|
||||
|
@ -199,14 +197,14 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
l2_sensitivity = (2 *
|
||||
loss.lipchitz_constant(self.class_weights)) / \
|
||||
(loss.gamma() * self.n_samples * self.batch_size)
|
||||
unit_vector = tf.random.normal(shape=(input_dim, output_dim),
|
||||
mean=0,
|
||||
seed=1,
|
||||
stddev=1.0,
|
||||
dtype=self.dtype)
|
||||
unit_vector = tf.random.normal(
|
||||
shape=(input_dim, output_dim),
|
||||
mean=0,
|
||||
seed=1,
|
||||
stddev=1.0,
|
||||
dtype=self.dtype)
|
||||
unit_vector = unit_vector / tf.math.sqrt(
|
||||
tf.reduce_sum(tf.math.square(unit_vector), axis=0)
|
||||
)
|
||||
tf.reduce_sum(tf.math.square(unit_vector), axis=0))
|
||||
|
||||
beta = l2_sensitivity / per_class_epsilon
|
||||
alpha = input_dim # input_dim
|
||||
|
@ -214,8 +212,7 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
alpha,
|
||||
beta=1 / beta,
|
||||
seed=1,
|
||||
dtype=self.dtype
|
||||
)
|
||||
dtype=self.dtype)
|
||||
return unit_vector * gamma
|
||||
raise NotImplementedError('Noise distribution: {0} is not '
|
||||
'a valid distribution'.format(distribution))
|
||||
|
@ -245,10 +242,8 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
except AttributeError:
|
||||
raise AttributeError(
|
||||
"Neither '{0}' nor '{1}' object has attribute '{2}'"
|
||||
"".format(self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__,
|
||||
name)
|
||||
)
|
||||
''.format(self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__, name))
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
"""Set attribute to self instance if its the internal optimizer.
|
||||
|
@ -309,20 +304,15 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
self._is_init = True
|
||||
return self
|
||||
|
||||
def __call__(self,
|
||||
noise_distribution,
|
||||
epsilon,
|
||||
layers,
|
||||
class_weights,
|
||||
n_samples,
|
||||
batch_size):
|
||||
def __call__(self, noise_distribution, epsilon, layers, class_weights,
|
||||
n_samples, batch_size):
|
||||
"""Accepts required values for bolton method from context entry point.
|
||||
|
||||
Stores them on the optimizer for use throughout fitting.
|
||||
|
||||
Args:
|
||||
noise_distribution: the noise distribution to pick.
|
||||
see _accepted_distributions and get_noise for possible values.
|
||||
noise_distribution: the noise distribution to pick. see
|
||||
_accepted_distributions and get_noise for possible values.
|
||||
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
||||
layers: list of Keras/Tensorflow layers. Can be found as model.layers
|
||||
class_weights: class_weights used, which may either be a scalar or 1D
|
||||
|
@ -341,8 +331,8 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
'distributions'.format(noise_distribution,
|
||||
_accepted_distributions))
|
||||
self.noise_distribution = noise_distribution
|
||||
self.learning_rate.initialize(self.loss.beta(class_weights),
|
||||
self.loss.gamma())
|
||||
self.learning_rate.initialize(
|
||||
self.loss.beta(class_weights), self.loss.gamma())
|
||||
self.epsilon = tf.constant(epsilon, dtype=self.dtype)
|
||||
self.class_weights = tf.constant(class_weights, dtype=self.dtype)
|
||||
self.n_samples = tf.constant(n_samples, dtype=self.dtype)
|
||||
|
@ -369,9 +359,10 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
for layer in self.layers:
|
||||
input_dim = layer.kernel.shape[0]
|
||||
output_dim = layer.units
|
||||
noise = self.get_noise(input_dim,
|
||||
output_dim,
|
||||
)
|
||||
noise = self.get_noise(
|
||||
input_dim,
|
||||
output_dim,
|
||||
)
|
||||
layer.kernel = tf.math.add(layer.kernel, noise)
|
||||
self.noise_distribution = None
|
||||
self.learning_rate.de_initialize()
|
||||
|
|
|
@ -111,9 +111,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
|||
def call(self, y_true, y_pred):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(
|
||||
tf.math.squared_difference(y_true, y_pred),
|
||||
axis=1
|
||||
)
|
||||
tf.math.squared_difference(y_true, y_pred), axis=1)
|
||||
|
||||
def max_class_weight(self, class_weight, dtype=tf.float32):
|
||||
"""the maximum weighting in class weights (max value) as a scalar tensor.
|
||||
|
@ -183,20 +181,24 @@ class TestOptimizer(OptimizerV2):
|
|||
|
||||
class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||
"""BoltOn Optimizer tests."""
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'getattr',
|
||||
'fn': '__getattr__',
|
||||
'args': ['dtype'],
|
||||
'result': tf.float32,
|
||||
'test_attr': None},
|
||||
{'testcase_name': 'project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': ['dtype'],
|
||||
'result': None,
|
||||
'test_attr': ''},
|
||||
{
|
||||
'testcase_name': 'getattr',
|
||||
'fn': '__getattr__',
|
||||
'args': ['dtype'],
|
||||
'result': tf.float32,
|
||||
'test_attr': None
|
||||
},
|
||||
{
|
||||
'testcase_name': 'project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': ['dtype'],
|
||||
'result': None,
|
||||
'test_attr': ''
|
||||
},
|
||||
])
|
||||
|
||||
def test_fn(self, fn, args, result, test_attr):
|
||||
"""test that a fn of BoltOn optimizer is working as expected.
|
||||
|
||||
|
@ -204,9 +206,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
fn: method of Optimizer to test
|
||||
args: args to optimizer fn
|
||||
result: the expected result
|
||||
test_attr: None if the fn returns the test result. Otherwise, this is
|
||||
the attribute of BoltOn to check against result with.
|
||||
|
||||
test_attr: None if the fn returns the test result. Otherwise, this is the
|
||||
attribute of BoltOn to check against result with.
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
loss = TestLoss(1, 1, 1)
|
||||
|
@ -231,30 +232,38 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': '1 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]},
|
||||
{'testcase_name': '2 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (2,),
|
||||
'n_out': 1,
|
||||
'result': [[0.707107], [0.707107]]},
|
||||
{'testcase_name': '1 value project to r=2',
|
||||
'r': 2,
|
||||
'init_value': 3,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[2]]},
|
||||
{'testcase_name': 'no project',
|
||||
'r': 2,
|
||||
'init_value': 1,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]},
|
||||
{
|
||||
'testcase_name': '1 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]
|
||||
},
|
||||
{
|
||||
'testcase_name': '2 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (2,),
|
||||
'n_out': 1,
|
||||
'result': [[0.707107], [0.707107]]
|
||||
},
|
||||
{
|
||||
'testcase_name': '1 value project to r=2',
|
||||
'r': 2,
|
||||
'init_value': 3,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[2]]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'no project',
|
||||
'r': 2,
|
||||
'init_value': 1,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]
|
||||
},
|
||||
])
|
||||
def test_project(self, r, shape, n_out, init_value, result):
|
||||
"""test that a fn of BoltOn optimizer is working as expected.
|
||||
|
@ -267,6 +276,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
result: the expected output after projection.
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
|
||||
def project_fn(r):
|
||||
loss = TestLoss(1, 1, r)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -283,15 +293,18 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
bolton.n_samples = 1
|
||||
bolton.project_weights_to_r()
|
||||
return _ops.convert_to_tensor_v2(bolton.layers[0].kernel, tf.float32)
|
||||
|
||||
res = project_fn(r)
|
||||
self.assertAllClose(res, result)
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal values',
|
||||
'epsilon': 2,
|
||||
'noise': 'laplace',
|
||||
'class_weights': 1},
|
||||
{
|
||||
'testcase_name': 'normal values',
|
||||
'epsilon': 2,
|
||||
'noise': 'laplace',
|
||||
'class_weights': 1
|
||||
},
|
||||
])
|
||||
def test_context_manager(self, noise, epsilon, class_weights):
|
||||
"""Tests the context manager functionality of the optimizer.
|
||||
|
@ -301,6 +314,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
epsilon: epsilon privacy parameter to use
|
||||
class_weights: class_weights to use
|
||||
"""
|
||||
|
||||
@tf.function
|
||||
def test_run():
|
||||
loss = TestLoss(1, 1, 1)
|
||||
|
@ -313,18 +327,23 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
with bolton(noise, epsilon, model.layers, class_weights, 1, 1) as _:
|
||||
pass
|
||||
return _ops.convert_to_tensor_v2(bolton.epsilon, dtype=tf.float32)
|
||||
|
||||
epsilon = test_run()
|
||||
self.assertEqual(epsilon.numpy(), -1)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid noise',
|
||||
'epsilon': 1,
|
||||
'noise': 'not_valid',
|
||||
'err_msg': 'Detected noise distribution: not_valid not one of:'},
|
||||
{'testcase_name': 'invalid epsilon',
|
||||
'epsilon': -1,
|
||||
'noise': 'laplace',
|
||||
'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon <inf'},
|
||||
{
|
||||
'testcase_name': 'invalid noise',
|
||||
'epsilon': 1,
|
||||
'noise': 'not_valid',
|
||||
'err_msg': 'Detected noise distribution: not_valid not one of:'
|
||||
},
|
||||
{
|
||||
'testcase_name': 'invalid epsilon',
|
||||
'epsilon': -1,
|
||||
'noise': 'laplace',
|
||||
'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon <inf'
|
||||
},
|
||||
])
|
||||
def test_context_domains(self, noise, epsilon, err_msg):
|
||||
"""Tests the context domains.
|
||||
|
@ -333,7 +352,6 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
err_msg: the expected error message
|
||||
|
||||
"""
|
||||
|
||||
@tf.function
|
||||
|
@ -347,15 +365,18 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
model.n_outputs))
|
||||
with bolton(noise, epsilon, model.layers, 1, 1, 1) as _:
|
||||
pass
|
||||
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
test_run(noise, epsilon)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1],
|
||||
'err_msg': 'This method must be called from within the '
|
||||
'optimizer\'s context'},
|
||||
{
|
||||
'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1],
|
||||
'err_msg': 'This method must be called from within the '
|
||||
'optimizer\'s context'
|
||||
},
|
||||
])
|
||||
def test_not_in_context(self, fn, args, err_msg):
|
||||
"""Tests that the expected functions raise errors when not in context.
|
||||
|
@ -365,6 +386,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
args: the arguments for said function
|
||||
err_msg: expected error message
|
||||
"""
|
||||
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -379,33 +401,51 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
test_run(fn, args)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: get_updates',
|
||||
'fn': 'get_updates',
|
||||
'args': [0, 0]},
|
||||
{'testcase_name': 'fn: get_config',
|
||||
'fn': 'get_config',
|
||||
'args': []},
|
||||
{'testcase_name': 'fn: from_config',
|
||||
'fn': 'from_config',
|
||||
'args': [0]},
|
||||
{'testcase_name': 'fn: _resource_apply_dense',
|
||||
'fn': '_resource_apply_dense',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: _resource_apply_sparse',
|
||||
'fn': '_resource_apply_sparse',
|
||||
'args': [1, 1, 1]},
|
||||
{'testcase_name': 'fn: apply_gradients',
|
||||
'fn': 'apply_gradients',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'fn: minimize',
|
||||
'fn': 'minimize',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: _compute_gradients',
|
||||
'fn': '_compute_gradients',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: get_gradients',
|
||||
'fn': 'get_gradients',
|
||||
'args': [1, 1]},
|
||||
{
|
||||
'testcase_name': 'fn: get_updates',
|
||||
'fn': 'get_updates',
|
||||
'args': [0, 0]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: get_config',
|
||||
'fn': 'get_config',
|
||||
'args': []
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: from_config',
|
||||
'fn': 'from_config',
|
||||
'args': [0]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: _resource_apply_dense',
|
||||
'fn': '_resource_apply_dense',
|
||||
'args': [1, 1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: _resource_apply_sparse',
|
||||
'fn': '_resource_apply_sparse',
|
||||
'args': [1, 1, 1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: apply_gradients',
|
||||
'fn': 'apply_gradients',
|
||||
'args': [1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: minimize',
|
||||
'fn': 'minimize',
|
||||
'args': [1, 1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: _compute_gradients',
|
||||
'fn': '_compute_gradients',
|
||||
'args': [1, 1]
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: get_gradients',
|
||||
'fn': 'get_gradients',
|
||||
'args': [1, 1]
|
||||
},
|
||||
])
|
||||
def test_rerouted_function(self, fn, args):
|
||||
"""Tests rerouted function.
|
||||
|
@ -435,18 +475,19 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
bolton.noise_distribution = 'laplace'
|
||||
bolton.n_outputs = 1
|
||||
bolton.n_samples = 1
|
||||
self.assertEqual(
|
||||
getattr(bolton, fn, lambda: 'fn not found')(*args),
|
||||
'test'
|
||||
)
|
||||
self.assertEqual(getattr(bolton, fn, lambda: 'fn not found')(*args), 'test')
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': []},
|
||||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1]},
|
||||
{
|
||||
'testcase_name': 'fn: project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': []
|
||||
},
|
||||
{
|
||||
'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1]
|
||||
},
|
||||
])
|
||||
def test_not_reroute_fn(self, fn, args):
|
||||
"""Test function is not rerouted.
|
||||
|
@ -458,6 +499,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -480,12 +522,13 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
else:
|
||||
res = 0
|
||||
return _ops.convert_to_tensor_v2(res, dtype=tf.float32)
|
||||
|
||||
self.assertNotEqual(test_run(fn, args), 0)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr: _iterations',
|
||||
'attr': '_iterations'}
|
||||
])
|
||||
@parameterized.named_parameters([{
|
||||
'testcase_name': 'attr: _iterations',
|
||||
'attr': '_iterations'
|
||||
}])
|
||||
def test_reroute_attr(self, attr):
|
||||
"""Test a function is rerouted.
|
||||
|
||||
|
@ -498,13 +541,13 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
loss = TestLoss(1, 1, 1)
|
||||
internal_optimizer = TestOptimizer()
|
||||
optimizer = opt.BoltOn(internal_optimizer, loss)
|
||||
self.assertEqual(getattr(optimizer, attr),
|
||||
getattr(internal_optimizer, attr))
|
||||
self.assertEqual(
|
||||
getattr(optimizer, attr), getattr(internal_optimizer, attr))
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr does not exist',
|
||||
'attr': '_not_valid'}
|
||||
])
|
||||
@parameterized.named_parameters([{
|
||||
'testcase_name': 'attr does not exist',
|
||||
'attr': '_not_valid'
|
||||
}])
|
||||
def test_attribute_error(self, attr):
|
||||
"""Test rerouting of attributes.
|
||||
|
||||
|
@ -524,12 +567,11 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
class SchedulerTest(keras_parameterized.TestCase):
|
||||
"""GammaBeta Scheduler tests."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'not in context',
|
||||
'err_msg': 'Please initialize the GammaBetaDecreasingStep Learning Rate'
|
||||
' Scheduler'
|
||||
}
|
||||
])
|
||||
@parameterized.named_parameters([{
|
||||
'testcase_name': 'not in context',
|
||||
'err_msg': 'Please initialize the GammaBetaDecreasingStep Learning Rate'
|
||||
' Scheduler'
|
||||
}])
|
||||
def test_bad_call(self, err_msg):
|
||||
"""Test attribute of internal opt correctly rerouted to the internal opt.
|
||||
|
||||
|
@ -541,15 +583,21 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
scheduler(1)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'step 1',
|
||||
'step': 1,
|
||||
'res': 0.5},
|
||||
{'testcase_name': 'step 2',
|
||||
'step': 2,
|
||||
'res': 0.5},
|
||||
{'testcase_name': 'step 3',
|
||||
'step': 3,
|
||||
'res': 0.333333333},
|
||||
{
|
||||
'testcase_name': 'step 1',
|
||||
'step': 1,
|
||||
'res': 0.5
|
||||
},
|
||||
{
|
||||
'testcase_name': 'step 2',
|
||||
'step': 2,
|
||||
'res': 0.5
|
||||
},
|
||||
{
|
||||
'testcase_name': 'step 3',
|
||||
'step': 3,
|
||||
'res': 0.333333333
|
||||
},
|
||||
])
|
||||
def test_call(self, step, res):
|
||||
"""Test call.
|
||||
|
|
|
@ -13,10 +13,8 @@
|
|||
# limitations under the License.
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import quantile_estimator_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
|
@ -44,10 +42,7 @@ def _make_quantile_estimator_query(initial_estimate,
|
|||
raise ValueError(
|
||||
'Cannot set expected_num_records to None for tree aggregation.')
|
||||
return quantile_estimator_query.NoPrivacyQuantileEstimatorQuery(
|
||||
initial_estimate,
|
||||
target_quantile,
|
||||
learning_rate,
|
||||
geometric_update)
|
||||
initial_estimate, target_quantile, learning_rate, geometric_update)
|
||||
|
||||
|
||||
class QuantileEstimatorQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
@ -109,7 +104,7 @@ class QuantileEstimatorQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# to 4 / sqrt(2.0). Still only one record is below, so it reduces to 2.0.
|
||||
# Now no records are below, and the estimate norm stays there (at 2.0).
|
||||
|
||||
four_div_root_two = 4 / np.sqrt(2.0) # approx 2.828
|
||||
four_div_root_two = 4 / np.sqrt(2.0) # approx 2.828
|
||||
|
||||
expected_estimates = [8.0, 4.0, four_div_root_two, 2.0, 2.0]
|
||||
for expected_estimate in expected_estimates:
|
||||
|
@ -175,7 +170,7 @@ class QuantileEstimatorQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# is multiplied by sqrt(2.0). Still only one is above so it increases to
|
||||
# 4.0. Now both records are above, and the estimate stays there (at 4.0).
|
||||
|
||||
two_times_root_two = 2 * np.sqrt(2.0) # approx 2.828
|
||||
two_times_root_two = 2 * np.sqrt(2.0) # approx 2.828
|
||||
|
||||
expected_estimates = [1.0, 2.0, two_times_root_two, 4.0, 4.0]
|
||||
for expected_estimate in expected_estimates:
|
||||
|
@ -201,8 +196,10 @@ class QuantileEstimatorQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# 100 records equally spaced from 0 to 10 in 0.1 increments.
|
||||
# Test that we converge to the correct median value and bounce around it.
|
||||
num_records = 21
|
||||
records = [tf.constant(x) for x in np.linspace(
|
||||
0.0, 10.0, num=num_records, dtype=np.float32)]
|
||||
records = [
|
||||
tf.constant(x)
|
||||
for x in np.linspace(0.0, 10.0, num=num_records, dtype=np.float32)
|
||||
]
|
||||
|
||||
query = _make_quantile_estimator_query(
|
||||
initial_estimate=(1.0 if start_low else 10.0),
|
||||
|
@ -267,9 +264,7 @@ class QuantileEstimatorQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
def test_raises_with_non_scalar_record(self):
|
||||
query = quantile_estimator_query.NoPrivacyQuantileEstimatorQuery(
|
||||
initial_estimate=1.0,
|
||||
target_quantile=0.5,
|
||||
learning_rate=1.0)
|
||||
initial_estimate=1.0, target_quantile=0.5, learning_rate=1.0)
|
||||
|
||||
with self.assertRaisesRegex(ValueError, 'scalar'):
|
||||
query.accumulate_record(None, None, [1.0, 2.0])
|
||||
|
|
|
@ -28,7 +28,6 @@ from typing import Any, Callable, Collection, Optional, Tuple, Union
|
|||
import attr
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
# TODO(b/192464750): find a proper place for the helper functions, privatize
|
||||
# the tree aggregation logic, and encourage users to use the DPQuery API.
|
||||
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for `tree_aggregation_query`."""
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
@ -212,11 +211,11 @@ class TreeCumulativeSumQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
@parameterized.named_parameters(
|
||||
('two_records_noise_fn', [2.71828, 3.14159], _get_noise_fn),
|
||||
('five_records_noise_fn', np.random.uniform(low=0.1, size=5).tolist(),
|
||||
_get_noise_fn),
|
||||
('five_records_noise_fn', np.random.uniform(
|
||||
low=0.1, size=5).tolist(), _get_noise_fn),
|
||||
('two_records_generator', [2.71828, 3.14159], _get_noise_generator),
|
||||
('five_records_generator', np.random.uniform(low=0.1, size=5).tolist(),
|
||||
_get_noise_generator),
|
||||
('five_records_generator', np.random.uniform(
|
||||
low=0.1, size=5).tolist(), _get_noise_generator),
|
||||
)
|
||||
def test_noisy_cumsum_and_state_update(self, records, value_generator):
|
||||
num_trials, vector_size = 10, 100
|
||||
|
|
|
@ -63,5 +63,6 @@ class DPDNNClassifierTest(tf.test.TestCase, parameterized.TestCase):
|
|||
input_fn=test_utils.make_input_fn(predict_features, predict_labels,
|
||||
False))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
|
@ -34,6 +34,7 @@ def make_input_data(size, classes):
|
|||
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
||||
np.power(feature_c, 1) + noise > 125).astype(int)
|
||||
else:
|
||||
|
||||
def label_fn(x):
|
||||
if x < 110.0:
|
||||
return 0
|
||||
|
@ -42,10 +43,11 @@ def make_input_data(size, classes):
|
|||
else:
|
||||
return 2
|
||||
|
||||
labels = list(map(
|
||||
label_fn,
|
||||
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
||||
np.power(feature_c, 1) + noise))
|
||||
labels = list(
|
||||
map(
|
||||
label_fn,
|
||||
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
||||
np.power(feature_c, 1) + noise))
|
||||
|
||||
return features, labels
|
||||
|
||||
|
@ -87,6 +89,7 @@ def make_input_fn(features, labels, training, batch_size=16):
|
|||
dataset = dataset.shuffle(1000)
|
||||
|
||||
return dataset.batch(batch_size)
|
||||
|
||||
return input_fn
|
||||
|
||||
|
||||
|
|
|
@ -64,5 +64,6 @@ class DPDNNClassifierTest(tf.test.TestCase, parameterized.TestCase):
|
|||
input_fn=test_utils.make_input_fn(predict_features, predict_labels,
|
||||
False))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
|
@ -434,8 +434,8 @@ def _binary_logistic_or_multi_class_head(n_classes, weight_column,
|
|||
encoded as integer or float within [0, 1] for `n_classes=2` and encoded as
|
||||
integer values in {0, 1,..., n_classes-1} for `n_classes`>2 . Also there
|
||||
will be errors if vocabulary is not provided and labels are string.
|
||||
loss_reduction: Describes how to reduce training loss over batch.
|
||||
Defaults to `SUM`.
|
||||
loss_reduction: Describes how to reduce training loss over batch. Defaults
|
||||
to `SUM`.
|
||||
|
||||
Returns:
|
||||
`head._Head` instance.
|
||||
|
|
|
@ -53,9 +53,10 @@ def make_dp_model_class(cls):
|
|||
model.fit(train_data, train_labels, epochs=1, batch_size=32)
|
||||
```
|
||||
|
||||
""").format(base_model='tf.keras.' + cls.__name__,
|
||||
short_base_model=cls.__name__,
|
||||
dp_model_class='DP' + cls.__name__)
|
||||
""").format(
|
||||
base_model='tf.keras.' + cls.__name__,
|
||||
short_base_model=cls.__name__,
|
||||
dp_model_class='DP' + cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
|
|
@ -40,8 +40,8 @@ class RegressionDataset:
|
|||
"""Class for storing labeled examples for a regression dataset.
|
||||
|
||||
Attributes:
|
||||
points: array of shape (num_examples, dimension) containing the points to
|
||||
be classified.
|
||||
points: array of shape (num_examples, dimension) containing the points to be
|
||||
classified.
|
||||
labels: array of shape (num_examples,) containing the corresponding labels,
|
||||
each belonging to the set {0,1,...,num_classes-1}, where num_classes is
|
||||
the number of classes.
|
||||
|
@ -51,7 +51,7 @@ class RegressionDataset:
|
|||
|
||||
|
||||
def linearly_separable_labeled_examples(
|
||||
num_examples: int, weights: np.ndarray)-> RegressionDataset:
|
||||
num_examples: int, weights: np.ndarray) -> RegressionDataset:
|
||||
"""Generates num_examples labeled examples using separator given by weights.
|
||||
|
||||
Args:
|
||||
|
@ -75,7 +75,7 @@ def linearly_separable_labeled_examples(
|
|||
|
||||
def synthetic_linearly_separable_data(
|
||||
num_train: int, num_test: int, dimension: int,
|
||||
num_classes: int)-> Tuple[RegressionDataset, RegressionDataset]:
|
||||
num_classes: int) -> Tuple[RegressionDataset, RegressionDataset]:
|
||||
"""Generates synthetic train and test data for logistic regression.
|
||||
|
||||
Args:
|
||||
|
@ -103,7 +103,7 @@ def synthetic_linearly_separable_data(
|
|||
return (train_dataset, test_dataset)
|
||||
|
||||
|
||||
def mnist_dataset()-> Tuple[RegressionDataset, RegressionDataset]:
|
||||
def mnist_dataset() -> Tuple[RegressionDataset, RegressionDataset]:
|
||||
"""Generates (normalized) train and test data for MNIST.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -11,9 +11,9 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensorflow_privacy.privacy.logistic_regression.datasets."""
|
||||
|
||||
import unittest
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
from tensorflow_privacy.privacy.logistic_regression import datasets
|
||||
|
@ -22,14 +22,16 @@ from tensorflow_privacy.privacy.logistic_regression import datasets
|
|||
class DatasetsTest(parameterized.TestCase):
|
||||
|
||||
@parameterized.parameters(
|
||||
(1, np.array([[1],])),
|
||||
(2, np.array([[1],])),
|
||||
(5, np.array([[-1, 1], [1, -1]])),
|
||||
(1, np.array([
|
||||
[1],
|
||||
])), (2, np.array([
|
||||
[1],
|
||||
])), (5, np.array([[-1, 1], [1, -1]])),
|
||||
(15, np.array([[-1, 1.5, 2.1], [1.3, -3.3, -7.1], [1.3, -3.3, -7.1]])))
|
||||
def test_linearly_separable_labeled_examples(self, num_examples, weights):
|
||||
dimension, num_classes = weights.shape
|
||||
dataset = datasets.linearly_separable_labeled_examples(num_examples,
|
||||
weights)
|
||||
dataset = datasets.linearly_separable_labeled_examples(
|
||||
num_examples, weights)
|
||||
self.assertEqual(dataset.points.shape, (num_examples, dimension))
|
||||
self.assertEqual(dataset.labels.shape, (num_examples,))
|
||||
product = np.matmul(dataset.points, weights)
|
||||
|
@ -37,11 +39,8 @@ class DatasetsTest(parameterized.TestCase):
|
|||
for j in range(num_classes):
|
||||
self.assertGreaterEqual(product[i, dataset.labels[i]], product[i, j])
|
||||
|
||||
@parameterized.parameters(
|
||||
(1, 1, 1, 2),
|
||||
(20, 5, 1, 2),
|
||||
(20, 5, 2, 2),
|
||||
(1000, 10, 15, 10))
|
||||
@parameterized.parameters((1, 1, 1, 2), (20, 5, 1, 2), (20, 5, 2, 2),
|
||||
(1000, 10, 15, 10))
|
||||
def test_synthetic(self, num_train, num_test, dimension, num_classes):
|
||||
(train_dataset, test_dataset) = datasets.synthetic_linearly_separable_data(
|
||||
num_train, num_test, dimension, num_classes)
|
||||
|
@ -73,5 +72,6 @@ class DatasetsTest(parameterized.TestCase):
|
|||
self.assertTrue(np.all(np.isin(train_dataset.labels, range(10))))
|
||||
self.assertTrue(np.all(np.isin(test_dataset.labels, range(10))))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -52,21 +52,26 @@ class KiferRegularizer(tf.keras.regularizers.Regularizer):
|
|||
(self._l2_regularizer,
|
||||
variance) = self.logistic_objective_perturbation_parameters(
|
||||
num_train, epsilon, delta, num_classes, input_clipping_norm)
|
||||
self._b = tf.random.normal(shape=[dimension, num_classes], mean=0.0,
|
||||
stddev=math.sqrt(variance),
|
||||
dtype=tf.dtypes.float32)
|
||||
self._b = tf.random.normal(
|
||||
shape=[dimension, num_classes],
|
||||
mean=0.0,
|
||||
stddev=math.sqrt(variance),
|
||||
dtype=tf.dtypes.float32)
|
||||
|
||||
def __call__(self, x):
|
||||
return (tf.reduce_sum(self._l2_regularizer*tf.square(x)) +
|
||||
(1/self._num_train)*tf.reduce_sum(tf.multiply(x, self._b)))
|
||||
return (tf.reduce_sum(self._l2_regularizer * tf.square(x)) +
|
||||
(1 / self._num_train) * tf.reduce_sum(tf.multiply(x, self._b)))
|
||||
|
||||
def get_config(self):
|
||||
return {'l2_regularizer': self._l2_regularizer,
|
||||
'num_train': self._num_train, 'b': self._b}
|
||||
return {
|
||||
'l2_regularizer': self._l2_regularizer,
|
||||
'num_train': self._num_train,
|
||||
'b': self._b
|
||||
}
|
||||
|
||||
def logistic_objective_perturbation_parameters(
|
||||
self, num_train: int, epsilon: float, delta: float, num_classes: int,
|
||||
input_clipping_norm: float)-> Tuple[float, float]:
|
||||
input_clipping_norm: float) -> Tuple[float, float]:
|
||||
"""Computes l2-regularization coefficient and Gaussian noise variance.
|
||||
|
||||
The setting is based on Algorithm 1 of Kifer et al.
|
||||
|
@ -85,19 +90,21 @@ class KiferRegularizer(tf.keras.regularizers.Regularizer):
|
|||
# zeta is an upper bound on the l2-norm of the loss function gradient.
|
||||
zeta = input_clipping_norm
|
||||
# variance is based on line 5 from Algorithm 1 of Kifer et al. (page 6):
|
||||
variance = zeta*zeta*(8*np.log(2/delta)+4*epsilon)/(epsilon*epsilon)
|
||||
variance = zeta * zeta * (8 * np.log(2 / delta) + 4 * epsilon) / (
|
||||
epsilon * epsilon)
|
||||
# lambda_coefficient is an upper bound on the spectral norm of the Hessian
|
||||
# of the loss function.
|
||||
lambda_coefficient = math.sqrt(2*num_classes)*(input_clipping_norm**2)/4
|
||||
l2_regularizer = lambda_coefficient/(epsilon*num_train)
|
||||
lambda_coefficient = math.sqrt(2 * num_classes) * (input_clipping_norm**
|
||||
2) / 4
|
||||
l2_regularizer = lambda_coefficient / (epsilon * num_train)
|
||||
return (l2_regularizer, variance)
|
||||
|
||||
|
||||
def logistic_objective_perturbation(train_dataset: datasets.RegressionDataset,
|
||||
test_dataset: datasets.RegressionDataset,
|
||||
epsilon: float, delta: float,
|
||||
epochs: int, num_classes: int,
|
||||
input_clipping_norm: float)-> List[float]:
|
||||
epsilon: float, delta: float, epochs: int,
|
||||
num_classes: int,
|
||||
input_clipping_norm: float) -> List[float]:
|
||||
"""Trains and validates differentially private logistic regression model.
|
||||
|
||||
The training is based on the Algorithm 1 of Kifer et al.
|
||||
|
@ -127,13 +134,21 @@ def logistic_objective_perturbation(train_dataset: datasets.RegressionDataset,
|
|||
kernel_regularizer = KiferRegularizer(num_train, dimension, epsilon, delta,
|
||||
num_classes, input_clipping_norm)
|
||||
return single_layer_softmax.single_layer_softmax_classifier(
|
||||
train_dataset, test_dataset, epochs, num_classes, optimizer, loss,
|
||||
train_dataset,
|
||||
test_dataset,
|
||||
epochs,
|
||||
num_classes,
|
||||
optimizer,
|
||||
loss,
|
||||
kernel_regularizer=kernel_regularizer)
|
||||
|
||||
|
||||
def compute_dpsgd_noise_multiplier(
|
||||
num_train: int, epsilon: float, delta: float, epochs: int,
|
||||
batch_size: int, tolerance: float = 1e-2) -> Optional[float]:
|
||||
def compute_dpsgd_noise_multiplier(num_train: int,
|
||||
epsilon: float,
|
||||
delta: float,
|
||||
epochs: int,
|
||||
batch_size: int,
|
||||
tolerance: float = 1e-2) -> Optional[float]:
|
||||
"""Computes the noise multiplier for DP-SGD given privacy parameters.
|
||||
|
||||
The algorithm performs binary search on the values of epsilon.
|
||||
|
@ -153,20 +168,17 @@ def compute_dpsgd_noise_multiplier(
|
|||
the given tolerance) for which using DPKerasAdamOptimizer will result in an
|
||||
(epsilon, delta)-differentially private trained model.
|
||||
"""
|
||||
search_parameters = common.BinarySearchParameters(lower_bound=0,
|
||||
upper_bound=math.inf,
|
||||
initial_guess=1,
|
||||
tolerance=tolerance)
|
||||
search_parameters = common.BinarySearchParameters(
|
||||
lower_bound=0, upper_bound=math.inf, initial_guess=1, tolerance=tolerance)
|
||||
return common.inverse_monotone_function(
|
||||
lambda x: compute_epsilon(num_train, batch_size, x, epochs, delta)[0],
|
||||
epsilon, search_parameters)
|
||||
|
||||
|
||||
def logistic_dpsgd(train_dataset: datasets.RegressionDataset,
|
||||
test_dataset: datasets.RegressionDataset,
|
||||
epsilon: float, delta: float, epochs: int, num_classes: int,
|
||||
batch_size: int, num_microbatches: int,
|
||||
clipping_norm: float)-> List[float]:
|
||||
test_dataset: datasets.RegressionDataset, epsilon: float,
|
||||
delta: float, epochs: int, num_classes: int, batch_size: int,
|
||||
num_microbatches: int, clipping_norm: float) -> List[float]:
|
||||
"""Trains and validates private logistic regression model via DP-SGD.
|
||||
|
||||
The training is based on the differentially private stochasstic gradient
|
||||
|
@ -183,8 +195,8 @@ def logistic_dpsgd(train_dataset: datasets.RegressionDataset,
|
|||
num_classes: number of classes.
|
||||
batch_size: the number of examples in each batch of gradient descent.
|
||||
num_microbatches: the number of microbatches in gradient descent.
|
||||
clipping_norm: the gradients will be normalized by DPKerasAdamOptimizer
|
||||
to have l2-norm at most clipping_norm.
|
||||
clipping_norm: the gradients will be normalized by DPKerasAdamOptimizer to
|
||||
have l2-norm at most clipping_norm.
|
||||
|
||||
Returns:
|
||||
List of test accuracies (one for each epoch) on test_dataset of model
|
||||
|
@ -199,7 +211,8 @@ def logistic_dpsgd(train_dataset: datasets.RegressionDataset,
|
|||
noise_multiplier = compute_dpsgd_noise_multiplier(num_train, epsilon, delta,
|
||||
epochs, batch_size)
|
||||
optimizer = dp_optimizer_keras.DPKerasAdamOptimizer(
|
||||
l2_norm_clip=clipping_norm, noise_multiplier=noise_multiplier,
|
||||
l2_norm_clip=clipping_norm,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches)
|
||||
loss = tf.keras.losses.CategoricalCrossentropy(
|
||||
reduction=tf.losses.Reduction.NONE)
|
||||
|
|
|
@ -27,7 +27,7 @@ class MultinomialLogisticRegressionTest(parameterized.TestCase):
|
|||
(5000, 500, 4, 1, 1e-5, 40, 2, 0.05),
|
||||
(10000, 1000, 3, 1, 1e-5, 40, 4, 0.1),
|
||||
(10000, 1000, 4, 1, 1e-5, 40, 4, 0.1),
|
||||
)
|
||||
)
|
||||
def test_logistic_objective_perturbation(self, num_train, num_test, dimension,
|
||||
epsilon, delta, epochs, num_classes,
|
||||
tolerance):
|
||||
|
@ -44,7 +44,7 @@ class MultinomialLogisticRegressionTest(parameterized.TestCase):
|
|||
(1, 1, 1e-5, 40, 1, 1e-2),
|
||||
(500, 0.1, 1e-5, 40, 50, 1e-2),
|
||||
(5000, 10, 1e-5, 40, 10, 1e-3),
|
||||
)
|
||||
)
|
||||
def test_compute_dpsgd_noise_multiplier(self, num_train, epsilon, delta,
|
||||
epochs, batch_size, tolerance):
|
||||
noise_multiplier = multinomial_logistic.compute_dpsgd_noise_multiplier(
|
||||
|
@ -61,19 +61,22 @@ class MultinomialLogisticRegressionTest(parameterized.TestCase):
|
|||
(5000, 500, 4, 1, 1e-5, 40, 2, 0.05, 10, 10, 1),
|
||||
(5000, 500, 3, 2, 1e-4, 40, 4, 0.1, 10, 10, 1),
|
||||
(5000, 500, 4, 2, 1e-4, 40, 4, 0.1, 10, 10, 1),
|
||||
)
|
||||
def test_logistic_dpsgd(self, num_train, num_test, dimension, epsilon,
|
||||
delta, epochs, num_classes, tolerance,
|
||||
batch_size, num_microbatches, clipping_norm):
|
||||
)
|
||||
def test_logistic_dpsgd(self, num_train, num_test, dimension, epsilon, delta,
|
||||
epochs, num_classes, tolerance, batch_size,
|
||||
num_microbatches, clipping_norm):
|
||||
(train_dataset, test_dataset) = datasets.synthetic_linearly_separable_data(
|
||||
num_train, num_test, dimension, num_classes)
|
||||
accuracy = multinomial_logistic.logistic_dpsgd(
|
||||
train_dataset, test_dataset, epsilon, delta, epochs, num_classes,
|
||||
batch_size, num_microbatches, clipping_norm)
|
||||
accuracy = multinomial_logistic.logistic_dpsgd(train_dataset, test_dataset,
|
||||
epsilon, delta, epochs,
|
||||
num_classes, batch_size,
|
||||
num_microbatches,
|
||||
clipping_norm)
|
||||
# Since the synthetic data is linearly separable, we expect the test
|
||||
# accuracy to come arbitrarily close to 1 as the number of training examples
|
||||
# grows.
|
||||
self.assertAlmostEqual(accuracy[-1], 1, delta=tolerance)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -11,8 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Implementation of a single-layer softmax classifier.
|
||||
"""
|
||||
"""Implementation of a single-layer softmax classifier."""
|
||||
|
||||
from typing import List
|
||||
import tensorflow as tf
|
||||
|
@ -22,10 +21,13 @@ from tensorflow_privacy.privacy.logistic_regression import datasets
|
|||
def single_layer_softmax_classifier(
|
||||
train_dataset: datasets.RegressionDataset,
|
||||
test_dataset: datasets.RegressionDataset,
|
||||
epochs: int, num_classes: int, optimizer: tf.keras.optimizers.Optimizer,
|
||||
epochs: int,
|
||||
num_classes: int,
|
||||
optimizer: tf.keras.optimizers.Optimizer,
|
||||
loss: tf.keras.losses.Loss = 'categorical_crossentropy',
|
||||
batch_size: int = 32,
|
||||
kernel_regularizer: tf.keras.regularizers.Regularizer = None)-> List[float]:
|
||||
kernel_regularizer: tf.keras.regularizers.Regularizer = None
|
||||
) -> List[float]:
|
||||
"""Trains a single layer neural network classifier with softmax activation.
|
||||
|
||||
Args:
|
||||
|
@ -47,13 +49,17 @@ def single_layer_softmax_classifier(
|
|||
one_hot_train_labels = tf.one_hot(train_dataset.labels, num_classes)
|
||||
one_hot_test_labels = tf.one_hot(test_dataset.labels, num_classes)
|
||||
model = tf.keras.Sequential()
|
||||
model.add(tf.keras.layers.Dense(units=num_classes,
|
||||
activation='softmax',
|
||||
kernel_regularizer=kernel_regularizer))
|
||||
model.add(
|
||||
tf.keras.layers.Dense(
|
||||
units=num_classes,
|
||||
activation='softmax',
|
||||
kernel_regularizer=kernel_regularizer))
|
||||
model.compile(optimizer, loss=loss, metrics=['accuracy'])
|
||||
history = model.fit(train_dataset.points, one_hot_train_labels,
|
||||
batch_size=batch_size, epochs=epochs,
|
||||
validation_data=(test_dataset.points,
|
||||
one_hot_test_labels),
|
||||
verbose=0)
|
||||
history = model.fit(
|
||||
train_dataset.points,
|
||||
one_hot_train_labels,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
validation_data=(test_dataset.points, one_hot_test_labels),
|
||||
verbose=0)
|
||||
return history.history['val_accuracy']
|
||||
|
|
|
@ -11,9 +11,9 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensorflow_privacy.privacy.logistic_regression.single_layer_softmax."""
|
||||
|
||||
import unittest
|
||||
|
||||
from absl.testing import parameterized
|
||||
from tensorflow_privacy.privacy.logistic_regression import datasets
|
||||
from tensorflow_privacy.privacy.logistic_regression import single_layer_softmax
|
||||
|
@ -26,7 +26,7 @@ class SingleLayerSoftmaxTest(parameterized.TestCase):
|
|||
(5000, 500, 4, 40, 2, 0.05),
|
||||
(10000, 1000, 3, 40, 4, 0.1),
|
||||
(10000, 1000, 4, 40, 4, 0.1),
|
||||
)
|
||||
)
|
||||
def test_single_layer_softmax(self, num_train, num_test, dimension, epochs,
|
||||
num_classes, tolerance):
|
||||
(train_dataset, test_dataset) = datasets.synthetic_linearly_separable_data(
|
||||
|
@ -35,5 +35,6 @@ class SingleLayerSoftmaxTest(parameterized.TestCase):
|
|||
train_dataset, test_dataset, epochs, num_classes, 'sgd')
|
||||
self.assertAlmostEqual(accuracy[-1], 1, delta=tolerance)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -138,12 +138,12 @@ def make_keras_optimizer_class(cls):
|
|||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. Default is `None` which means that number of microbatches
|
||||
is equal to batch size (i.e. each microbatch contains exactly one
|
||||
split. Default is `None` which means that number of microbatches is
|
||||
equal to batch size (i.e. each microbatch contains exactly one
|
||||
example). If `gradient_accumulation_steps` is greater than 1 and
|
||||
`num_microbatches` is not `None` then the effective number of
|
||||
microbatches is equal to
|
||||
`num_microbatches * gradient_accumulation_steps`.
|
||||
microbatches is equal to `num_microbatches *
|
||||
gradient_accumulation_steps`.
|
||||
gradient_accumulation_steps: If greater than 1 then optimizer will be
|
||||
accumulating gradients for this number of optimizer steps before
|
||||
applying them to update model weights. If this argument is set to 1
|
||||
|
@ -172,39 +172,39 @@ def make_keras_optimizer_class(cls):
|
|||
if self.gradient_accumulation_steps > 1:
|
||||
apply_update = tf.math.equal(
|
||||
tf.math.floormod(self.iterations + 1,
|
||||
self.gradient_accumulation_steps),
|
||||
0)
|
||||
self.gradient_accumulation_steps), 0)
|
||||
grad_scaler = tf.cast(1. / self.gradient_accumulation_steps, var_dtype)
|
||||
apply_state[(var_device, var_dtype)].update(
|
||||
{
|
||||
'apply_update': apply_update,
|
||||
'grad_scaler': grad_scaler
|
||||
})
|
||||
apply_state[(var_device, var_dtype)].update({
|
||||
'apply_update': apply_update,
|
||||
'grad_scaler': grad_scaler
|
||||
})
|
||||
|
||||
def _resource_apply_dense(self, grad, var, apply_state=None):
|
||||
if self.gradient_accumulation_steps > 1:
|
||||
var_device, var_dtype = var.device, var.dtype.base_dtype
|
||||
coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
||||
or self._fallback_apply_state(var_device, var_dtype))
|
||||
coefficients = ((apply_state or {}).get((var_device, var_dtype)) or
|
||||
self._fallback_apply_state(var_device, var_dtype))
|
||||
grad_acc = self.get_slot(var, 'grad_acc')
|
||||
|
||||
def _update_grad():
|
||||
apply_grad_op = super(DPOptimizerClass, self)._resource_apply_dense(
|
||||
grad_acc + grad * coefficients['grad_scaler'], var, apply_state)
|
||||
with tf.control_dependencies([apply_grad_op]):
|
||||
return grad_acc.assign(tf.zeros_like(grad_acc),
|
||||
use_locking=self._use_locking,
|
||||
read_value=False)
|
||||
return grad_acc.assign(
|
||||
tf.zeros_like(grad_acc),
|
||||
use_locking=self._use_locking,
|
||||
read_value=False)
|
||||
|
||||
def _accumulate():
|
||||
return grad_acc.assign_add(grad * coefficients['grad_scaler'],
|
||||
use_locking=self._use_locking,
|
||||
read_value=False)
|
||||
return grad_acc.assign_add(
|
||||
grad * coefficients['grad_scaler'],
|
||||
use_locking=self._use_locking,
|
||||
read_value=False)
|
||||
|
||||
return tf.cond(coefficients['apply_update'], _update_grad, _accumulate)
|
||||
else:
|
||||
return super(DPOptimizerClass, self)._resource_apply_dense(
|
||||
grad, var, apply_state)
|
||||
return super(DPOptimizerClass,
|
||||
self)._resource_apply_dense(grad, var, apply_state)
|
||||
|
||||
def _resource_apply_sparse_duplicate_indices(self, *args, **kwargs):
|
||||
if self.gradient_accumulation_steps > 1:
|
||||
|
@ -220,8 +220,8 @@ def make_keras_optimizer_class(cls):
|
|||
raise NotImplementedError(
|
||||
'Sparse gradients are not supported with large batch emulation.')
|
||||
else:
|
||||
return super(DPOptimizerClass, self)._resource_apply_sparse(
|
||||
*args, **kwargs)
|
||||
return super(DPOptimizerClass,
|
||||
self)._resource_apply_sparse(*args, **kwargs)
|
||||
|
||||
def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None):
|
||||
"""DP-SGD version of base class method."""
|
||||
|
|
|
@ -15,7 +15,6 @@
|
|||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras_vectorized
|
||||
|
||||
|
@ -108,8 +107,7 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
with tape:
|
||||
loss = self._loss(data0, var0) + self._loss(data1, var1)
|
||||
|
||||
grads_and_vars = opt._compute_gradients(
|
||||
loss, [var0, var1], tape=tape)
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0, var1], tape=tape)
|
||||
self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0])
|
||||
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
|
||||
|
||||
|
@ -442,10 +440,9 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
('DPKerasSGDOptimizer 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPKerasSGDOptimizer 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2),
|
||||
('DPKerasSGDOptimizer 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4),
|
||||
('DPKerasAdamOptimizer 2',
|
||||
dp_optimizer_keras.DPKerasAdamOptimizer, 1),
|
||||
('DPKerasAdagradOptimizer 2',
|
||||
dp_optimizer_keras.DPKerasAdagradOptimizer, 2),
|
||||
('DPKerasAdamOptimizer 2', dp_optimizer_keras.DPKerasAdamOptimizer, 1),
|
||||
('DPKerasAdagradOptimizer 2', dp_optimizer_keras.DPKerasAdagradOptimizer,
|
||||
2),
|
||||
)
|
||||
def testLargeBatchEmulation(self, cls, gradient_accumulation_steps):
|
||||
# Tests various optimizers with large batch emulation.
|
||||
|
|
|
@ -95,10 +95,11 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
model.fit(...)
|
||||
```
|
||||
|
||||
""".format(base_class='tf.keras.optimizers.' + cls.__name__,
|
||||
dp_keras_class='DPKeras' + cls.__name__,
|
||||
short_base_class=cls.__name__,
|
||||
dp_vectorized_keras_class='VectorizedDPKeras' + cls.__name__)
|
||||
""".format(
|
||||
base_class='tf.keras.optimizers.' + cls.__name__,
|
||||
dp_keras_class='DPKeras' + cls.__name__,
|
||||
short_base_class=cls.__name__,
|
||||
dp_vectorized_keras_class='VectorizedDPKeras' + cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -112,8 +113,8 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch
|
||||
is split.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
|
|
|
@ -18,7 +18,6 @@ import unittest
|
|||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
|
@ -30,13 +29,14 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
return 0.5 * tf.reduce_sum(
|
||||
input_tensor=tf.math.squared_difference(val0, val1), axis=1)
|
||||
|
||||
def _compute_expected_gradients(self, per_example_gradients,
|
||||
l2_norm_clip, num_microbatches):
|
||||
def _compute_expected_gradients(self, per_example_gradients, l2_norm_clip,
|
||||
num_microbatches):
|
||||
batch_size, num_vars = per_example_gradients.shape
|
||||
microbatch_gradients = np.mean(
|
||||
np.reshape(per_example_gradients,
|
||||
[num_microbatches,
|
||||
np.int(batch_size / num_microbatches), num_vars]),
|
||||
np.reshape(
|
||||
per_example_gradients,
|
||||
[num_microbatches,
|
||||
np.int(batch_size / num_microbatches), num_vars]),
|
||||
axis=1)
|
||||
microbatch_gradients_norms = np.linalg.norm(microbatch_gradients, axis=1)
|
||||
|
||||
|
@ -124,8 +124,8 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
l2_norm_clip = 1.0
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(l2_norm_clip, 0.0)
|
||||
|
||||
opt = cls(dp_sum_query, num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
opt = cls(
|
||||
dp_sum_query, num_microbatches=num_microbatches, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
|
|
|
@ -134,19 +134,15 @@ def make_vectorized_optimizer_class(cls):
|
|||
|
||||
if var_list is None:
|
||||
var_list = (
|
||||
tf.trainable_variables() + tf.get_collection(
|
||||
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
||||
tf.trainable_variables() +
|
||||
tf.get_collection(tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
||||
|
||||
def process_microbatch(microbatch_loss):
|
||||
"""Compute clipped grads for one microbatch."""
|
||||
microbatch_loss = tf.reduce_mean(input_tensor=microbatch_loss)
|
||||
grads, _ = zip(*super(DPOptimizerClass, self).compute_gradients(
|
||||
microbatch_loss,
|
||||
var_list,
|
||||
gate_gradients,
|
||||
aggregation_method,
|
||||
colocate_gradients_with_ops,
|
||||
grad_loss))
|
||||
microbatch_loss, var_list, gate_gradients, aggregation_method,
|
||||
colocate_gradients_with_ops, grad_loss))
|
||||
grads_list = [
|
||||
g if g is not None else tf.zeros_like(v)
|
||||
for (g, v) in zip(list(grads), var_list)
|
||||
|
|
|
@ -17,7 +17,6 @@ import unittest
|
|||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_vectorized import VectorizedDPAdagrad
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_vectorized import VectorizedDPAdam
|
||||
|
@ -63,19 +62,19 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
@parameterized.named_parameters(('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testClippingNorm(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
opt = cls(l2_norm_clip=1.0,
|
||||
noise_multiplier=0.,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
opt = cls(
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
|
@ -86,19 +85,19 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
@parameterized.named_parameters(('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testNoiseMultiplier(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
opt = cls(l2_norm_clip=4.0,
|
||||
noise_multiplier=8.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
opt = cls(
|
||||
l2_norm_clip=4.0,
|
||||
noise_multiplier=8.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
|
@ -168,10 +167,9 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
true_weights,
|
||||
atol=1.0)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
@parameterized.named_parameters(('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testDPGaussianOptimizerClass(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
|
|
|
@ -217,5 +217,6 @@ def main(unused_argv):
|
|||
# For saving a figure into a file:
|
||||
# plotting.save_plot(figure, <file_path>)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run(main)
|
||||
|
|
|
@ -482,8 +482,8 @@ class SingleAttackResult:
|
|||
return '\n'.join([
|
||||
'SingleAttackResult(',
|
||||
' SliceSpec: %s' % str(self.slice_spec),
|
||||
' DataSize: (ntrain=%d, ntest=%d)' % (self.data_size.ntrain,
|
||||
self.data_size.ntest),
|
||||
' DataSize: (ntrain=%d, ntest=%d)' %
|
||||
(self.data_size.ntrain, self.data_size.ntest),
|
||||
' AttackType: %s' % str(self.attack_type),
|
||||
' AUC: %.2f' % self.get_auc(),
|
||||
' Attacker advantage: %.2f' % self.get_attacker_advantage(), ')'
|
||||
|
@ -684,10 +684,8 @@ class AttackResults:
|
|||
summary.append('Best-performing attacks over all slices')
|
||||
summary.append(
|
||||
' %s (with %d training and %d test examples) achieved an AUC of %.2f on slice %s'
|
||||
% (max_auc_result_all.attack_type,
|
||||
max_auc_result_all.data_size.ntrain,
|
||||
max_auc_result_all.data_size.ntest,
|
||||
max_auc_result_all.get_auc(),
|
||||
% (max_auc_result_all.attack_type, max_auc_result_all.data_size.ntrain,
|
||||
max_auc_result_all.data_size.ntest, max_auc_result_all.get_auc(),
|
||||
max_auc_result_all.slice_spec))
|
||||
|
||||
max_advantage_result_all = self.get_result_with_max_attacker_advantage()
|
||||
|
@ -709,10 +707,8 @@ class AttackResults:
|
|||
max_auc_result = results.get_result_with_max_auc()
|
||||
summary.append(
|
||||
' %s (with %d training and %d test examples) achieved an AUC of %.2f'
|
||||
% (max_auc_result.attack_type,
|
||||
max_auc_result.data_size.ntrain,
|
||||
max_auc_result.data_size.ntest,
|
||||
max_auc_result.get_auc()))
|
||||
% (max_auc_result.attack_type, max_auc_result.data_size.ntrain,
|
||||
max_auc_result.data_size.ntest, max_auc_result.get_auc()))
|
||||
max_advantage_result = results.get_result_with_max_attacker_advantage()
|
||||
summary.append(
|
||||
' %s (with %d training and %d test examples) achieved an advantage of %.2f'
|
||||
|
@ -816,6 +812,8 @@ def get_flattened_attack_metrics(results: AttackResults):
|
|||
types += [str(attack_result.attack_type)] * 2
|
||||
slices += [str(attack_result.slice_spec)] * 2
|
||||
attack_metrics += ['adv', 'auc']
|
||||
values += [float(attack_result.get_attacker_advantage()),
|
||||
float(attack_result.get_auc())]
|
||||
values += [
|
||||
float(attack_result.get_attacker_advantage()),
|
||||
float(attack_result.get_auc())
|
||||
]
|
||||
return types, slices, attack_metrics, values
|
||||
|
|
|
@ -54,7 +54,8 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
in_train, out_train,
|
||||
in_train,
|
||||
out_train,
|
||||
slicing_spec: SlicingSpec = None,
|
||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
||||
tensorboard_dir=None,
|
||||
|
@ -70,7 +71,7 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
|||
attack_types: a list of attacks, each of type AttackType
|
||||
tensorboard_dir: directory for tensorboard summary
|
||||
tensorboard_merge_classifiers: if true, plot different classifiers with
|
||||
the same slicing_spec and metric in the same figure
|
||||
the same slicing_spec and metric in the same figure
|
||||
is_logit: whether the result of model.predict is logit or probability
|
||||
batch_size: the batch size for model.predict
|
||||
"""
|
||||
|
@ -96,19 +97,18 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
|||
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
results = run_attack_on_keras_model(
|
||||
self.model,
|
||||
(self._in_train_data, self._in_train_labels),
|
||||
(self._out_train_data, self._out_train_labels),
|
||||
self._slicing_spec,
|
||||
self._attack_types,
|
||||
self._is_logit, self._batch_size)
|
||||
self.model, (self._in_train_data, self._in_train_labels),
|
||||
(self._out_train_data, self._out_train_labels), self._slicing_spec,
|
||||
self._attack_types, self._is_logit, self._batch_size)
|
||||
logging.info(results)
|
||||
|
||||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
results)
|
||||
print('Attack result:')
|
||||
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||
print('\n'.join([
|
||||
' %s: %.4f' % (', '.join([s, t, m]), v)
|
||||
for t, s, m, v in zip(att_types, att_slices, att_metrics, att_values)
|
||||
]))
|
||||
|
||||
# Write to tensorboard if tensorboard_dir is specified
|
||||
if self._writers is not None:
|
||||
|
@ -117,7 +117,9 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
|||
|
||||
|
||||
def run_attack_on_keras_model(
|
||||
model, in_train, out_train,
|
||||
model,
|
||||
in_train,
|
||||
out_train,
|
||||
slicing_spec: SlicingSpec = None,
|
||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
||||
is_logit: bool = False,
|
||||
|
@ -132,6 +134,7 @@ def run_attack_on_keras_model(
|
|||
attack_types: a list of attacks, each of type AttackType
|
||||
is_logit: whether the result of model.predict is logit or probability
|
||||
batch_size: the batch size for model.predict
|
||||
|
||||
Returns:
|
||||
Results of the attack
|
||||
"""
|
||||
|
@ -139,16 +142,19 @@ def run_attack_on_keras_model(
|
|||
out_train_data, out_train_labels = out_train
|
||||
|
||||
# Compute predictions and losses
|
||||
in_train_pred, in_train_loss = calculate_losses(
|
||||
model, in_train_data, in_train_labels, is_logit, batch_size)
|
||||
out_train_pred, out_train_loss = calculate_losses(
|
||||
model, out_train_data, out_train_labels, is_logit, batch_size)
|
||||
in_train_pred, in_train_loss = calculate_losses(model, in_train_data,
|
||||
in_train_labels, is_logit,
|
||||
batch_size)
|
||||
out_train_pred, out_train_loss = calculate_losses(model, out_train_data,
|
||||
out_train_labels, is_logit,
|
||||
batch_size)
|
||||
attack_input = AttackInputData(
|
||||
logits_train=in_train_pred, logits_test=out_train_pred,
|
||||
labels_train=in_train_labels, labels_test=out_train_labels,
|
||||
loss_train=in_train_loss, loss_test=out_train_loss
|
||||
)
|
||||
results = mia.run_attacks(attack_input,
|
||||
slicing_spec=slicing_spec,
|
||||
attack_types=attack_types)
|
||||
logits_train=in_train_pred,
|
||||
logits_test=out_train_pred,
|
||||
labels_train=in_train_labels,
|
||||
labels_test=out_train_labels,
|
||||
loss_train=in_train_loss,
|
||||
loss_test=out_train_loss)
|
||||
results = mia.run_attacks(
|
||||
attack_input, slicing_spec=slicing_spec, attack_types=attack_types)
|
||||
return results
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""An example for using keras_evaluation."""
|
||||
|
||||
from absl import app
|
||||
|
@ -25,15 +24,15 @@ from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_s
|
|||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.keras_evaluation import MembershipInferenceCallback
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.keras_evaluation import run_attack_on_keras_model
|
||||
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
||||
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
|
||||
'different classifiers with the same slicing_spec and metric '
|
||||
'in the same figure.')
|
||||
flags.DEFINE_bool(
|
||||
'tensorboard_merge_classifiers', False, 'If true, plot '
|
||||
'different classifiers with the same slicing_spec and metric '
|
||||
'in the same figure.')
|
||||
|
||||
|
||||
def small_cnn():
|
||||
|
@ -76,14 +75,15 @@ def main(unused_argv):
|
|||
|
||||
# Get callback for membership inference attack.
|
||||
mia_callback = MembershipInferenceCallback(
|
||||
(x_train, y_train),
|
||||
(x_test, y_test),
|
||||
(x_train, y_train), (x_test, y_test),
|
||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK,
|
||||
AttackType.K_NEAREST_NEIGHBORS],
|
||||
attack_types=[
|
||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
||||
],
|
||||
tensorboard_dir=FLAGS.model_dir,
|
||||
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers,
|
||||
is_logit=True, batch_size=2048)
|
||||
is_logit=True,
|
||||
batch_size=2048)
|
||||
|
||||
# Train model with Keras
|
||||
model.fit(
|
||||
|
@ -102,11 +102,14 @@ def main(unused_argv):
|
|||
attack_types=[
|
||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
||||
],
|
||||
is_logit=True, batch_size=2048)
|
||||
is_logit=True,
|
||||
batch_size=2048)
|
||||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||
print('\n'.join([
|
||||
' %s: %.4f' % (', '.join([s, t, m]), v)
|
||||
for t, s, m, v in zip(att_types, att_slices, att_metrics, att_values)
|
||||
]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -13,10 +13,8 @@
|
|||
# limitations under the License.
|
||||
|
||||
from absl.testing import absltest
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import keras_evaluation
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResults
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
|
||||
|
@ -59,8 +57,7 @@ class UtilsTest(absltest.TestCase):
|
|||
def test_run_attack_on_keras_model(self):
|
||||
"""Test the attack."""
|
||||
results = keras_evaluation.run_attack_on_keras_model(
|
||||
self.model,
|
||||
(self.train_data, self.train_labels),
|
||||
self.model, (self.train_data, self.train_labels),
|
||||
(self.test_data, self.test_labels),
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK])
|
||||
self.assertIsInstance(results, AttackResults)
|
||||
|
|
|
@ -140,9 +140,9 @@ def _run_attack(attack_input: AttackInputData,
|
|||
attack_input: input data for running an attack
|
||||
attack_type: the attack to run
|
||||
balance_attacker_training: Whether the training and test sets for the
|
||||
membership inference attacker should have a balanced (roughly equal)
|
||||
number of samples from the training and test sets used to develop
|
||||
the model under attack.
|
||||
membership inference attacker should have a balanced (roughly equal)
|
||||
number of samples from the training and test sets used to develop the
|
||||
model under attack.
|
||||
min_num_samples: minimum number of examples in either training or test data.
|
||||
|
||||
Returns:
|
||||
|
@ -179,9 +179,9 @@ def run_attacks(attack_input: AttackInputData,
|
|||
attack_types: attacks to run
|
||||
privacy_report_metadata: the metadata of the model under attack.
|
||||
balance_attacker_training: Whether the training and test sets for the
|
||||
membership inference attacker should have a balanced (roughly equal)
|
||||
number of samples from the training and test sets used to develop
|
||||
the model under attack.
|
||||
membership inference attacker should have a balanced (roughly equal)
|
||||
number of samples from the training and test sets used to develop the
|
||||
model under attack.
|
||||
min_num_samples: minimum number of examples in either training or test data.
|
||||
|
||||
Returns:
|
||||
|
@ -200,8 +200,7 @@ def run_attacks(attack_input: AttackInputData,
|
|||
attack_input_slice = get_slice(attack_input, single_slice_spec)
|
||||
for attack_type in attack_types:
|
||||
attack_result = _run_attack(attack_input_slice, attack_type,
|
||||
balance_attacker_training,
|
||||
min_num_samples)
|
||||
balance_attacker_training, min_num_samples)
|
||||
if attack_result is not None:
|
||||
attack_results.append(attack_result)
|
||||
|
||||
|
|
|
@ -55,9 +55,8 @@ def create_attacker_data(attack_input_data: AttackInputData,
|
|||
attack_input_data: Original AttackInputData
|
||||
test_fraction: Fraction of the dataset to include in the test split.
|
||||
balance: Whether the training and test sets for the membership inference
|
||||
attacker should have a balanced (roughly equal) number of samples
|
||||
from the training and test sets used to develop the model
|
||||
under attack.
|
||||
attacker should have a balanced (roughly equal) number of samples from the
|
||||
training and test sets used to develop the model under attack.
|
||||
|
||||
Returns:
|
||||
AttackerData.
|
||||
|
@ -134,6 +133,7 @@ class TrainedAttacker:
|
|||
Args:
|
||||
input_features : A vector of features with the same semantics as x_train
|
||||
passed to train_model.
|
||||
|
||||
Returns:
|
||||
An array of probabilities denoting whether the example belongs to test.
|
||||
"""
|
||||
|
|
|
@ -81,5 +81,4 @@ def plot_histograms(train: Iterable[float],
|
|||
|
||||
def plot_roc_curve(roc_curve, plot_func=plot_curve_with_area) -> plt.Figure:
|
||||
"""Plot the ROC curve and the area under the curve."""
|
||||
return plot_func(
|
||||
roc_curve.fpr, roc_curve.tpr, xlabel='FPR', ylabel='TPR')
|
||||
return plot_func(roc_curve.fpr, roc_curve.tpr, xlabel='FPR', ylabel='TPR')
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""A hook and a function in tf estimator for membership inference attack."""
|
||||
|
||||
import os
|
||||
|
@ -58,7 +57,8 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
|||
def __init__(
|
||||
self,
|
||||
estimator,
|
||||
in_train, out_train,
|
||||
in_train,
|
||||
out_train,
|
||||
input_fn_constructor,
|
||||
slicing_spec: SlicingSpec = None,
|
||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
||||
|
@ -76,7 +76,7 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
|||
attack_types: a list of attacks, each of type AttackType
|
||||
tensorboard_dir: directory for tensorboard summary
|
||||
tensorboard_merge_classifiers: if true, plot different classifiers with
|
||||
the same slicing_spec and metric in the same figure
|
||||
the same slicing_spec and metric in the same figure
|
||||
"""
|
||||
in_train_data, self._in_train_labels = in_train
|
||||
out_train_data, self._out_train_labels = out_train
|
||||
|
@ -106,19 +106,19 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
|||
self._writers = None
|
||||
|
||||
def end(self, session):
|
||||
results = run_attack_helper(self._estimator,
|
||||
self._in_train_input_fn,
|
||||
self._out_train_input_fn,
|
||||
self._in_train_labels, self._out_train_labels,
|
||||
self._slicing_spec,
|
||||
results = run_attack_helper(self._estimator, self._in_train_input_fn,
|
||||
self._out_train_input_fn, self._in_train_labels,
|
||||
self._out_train_labels, self._slicing_spec,
|
||||
self._attack_types)
|
||||
logging.info(results)
|
||||
|
||||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
results)
|
||||
print('Attack result:')
|
||||
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||
print('\n'.join([
|
||||
' %s: %.4f' % (', '.join([s, t, m]), v)
|
||||
for t, s, m, v in zip(att_types, att_slices, att_metrics, att_values)
|
||||
]))
|
||||
|
||||
# Write to tensorboard if tensorboard_dir is specified
|
||||
global_step = self._estimator.get_variable_value('global_step')
|
||||
|
@ -128,7 +128,9 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
|||
|
||||
|
||||
def run_attack_on_tf_estimator_model(
|
||||
estimator, in_train, out_train,
|
||||
estimator,
|
||||
in_train,
|
||||
out_train,
|
||||
input_fn_constructor,
|
||||
slicing_spec: SlicingSpec = None,
|
||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,)):
|
||||
|
@ -142,6 +144,7 @@ def run_attack_on_tf_estimator_model(
|
|||
the input_fn for model prediction
|
||||
slicing_spec: slicing specification of the attack
|
||||
attack_types: a list of attacks, each of type AttackType
|
||||
|
||||
Returns:
|
||||
Results of the attack
|
||||
"""
|
||||
|
@ -153,10 +156,8 @@ def run_attack_on_tf_estimator_model(
|
|||
out_train_input_fn = input_fn_constructor(out_train_data, out_train_labels)
|
||||
|
||||
# Call the helper to run the attack.
|
||||
results = run_attack_helper(estimator,
|
||||
in_train_input_fn, out_train_input_fn,
|
||||
in_train_labels, out_train_labels,
|
||||
slicing_spec,
|
||||
results = run_attack_helper(estimator, in_train_input_fn, out_train_input_fn,
|
||||
in_train_labels, out_train_labels, slicing_spec,
|
||||
attack_types)
|
||||
logging.info('End of training attack:')
|
||||
logging.info(results)
|
||||
|
@ -165,8 +166,10 @@ def run_attack_on_tf_estimator_model(
|
|||
|
||||
def run_attack_helper(
|
||||
estimator,
|
||||
in_train_input_fn, out_train_input_fn,
|
||||
in_train_labels, out_train_labels,
|
||||
in_train_input_fn,
|
||||
out_train_input_fn,
|
||||
in_train_labels,
|
||||
out_train_labels,
|
||||
slicing_spec: SlicingSpec = None,
|
||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,)):
|
||||
"""A helper function to perform attack.
|
||||
|
@ -179,22 +182,23 @@ def run_attack_helper(
|
|||
out_train_labels: out of training labels
|
||||
slicing_spec: slicing specification of the attack
|
||||
attack_types: a list of attacks, each of type AttackType
|
||||
|
||||
Returns:
|
||||
Results of the attack
|
||||
"""
|
||||
# Compute predictions and losses
|
||||
in_train_pred, in_train_loss = calculate_losses(estimator,
|
||||
in_train_input_fn,
|
||||
in_train_pred, in_train_loss = calculate_losses(estimator, in_train_input_fn,
|
||||
in_train_labels)
|
||||
out_train_pred, out_train_loss = calculate_losses(estimator,
|
||||
out_train_input_fn,
|
||||
out_train_labels)
|
||||
attack_input = AttackInputData(
|
||||
logits_train=in_train_pred, logits_test=out_train_pred,
|
||||
labels_train=in_train_labels, labels_test=out_train_labels,
|
||||
loss_train=in_train_loss, loss_test=out_train_loss
|
||||
)
|
||||
results = mia.run_attacks(attack_input,
|
||||
slicing_spec=slicing_spec,
|
||||
attack_types=attack_types)
|
||||
logits_train=in_train_pred,
|
||||
logits_test=out_train_pred,
|
||||
labels_train=in_train_labels,
|
||||
labels_test=out_train_labels,
|
||||
loss_train=in_train_loss,
|
||||
loss_test=out_train_loss)
|
||||
results = mia.run_attacks(
|
||||
attack_input, slicing_spec=slicing_spec, attack_types=attack_types)
|
||||
return results
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""An example for using tf_estimator_evaluation."""
|
||||
|
||||
from absl import app
|
||||
|
@ -26,15 +25,15 @@ from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_s
|
|||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.tf_estimator_evaluation import MembershipInferenceTrainingHook
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.tf_estimator_evaluation import run_attack_on_tf_estimator_model
|
||||
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
||||
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
|
||||
'different classifiers with the same slicing_spec and metric '
|
||||
'in the same figure.')
|
||||
flags.DEFINE_bool(
|
||||
'tensorboard_merge_classifiers', False, 'If true, plot '
|
||||
'different classifiers with the same slicing_spec and metric '
|
||||
'in the same figure.')
|
||||
|
||||
|
||||
def small_cnn_fn(features, labels, mode):
|
||||
|
@ -55,8 +54,8 @@ def small_cnn_fn(features, labels, mode):
|
|||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
optimizer = tf.train.MomentumOptimizer(learning_rate=FLAGS.learning_rate,
|
||||
momentum=0.9)
|
||||
optimizer = tf.train.MomentumOptimizer(
|
||||
learning_rate=FLAGS.learning_rate, momentum=0.9)
|
||||
global_step = tf.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=scalar_loss, global_step=global_step)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
|
@ -111,13 +110,12 @@ def main(unused_argv):
|
|||
|
||||
# Get hook for membership inference attack.
|
||||
mia_hook = MembershipInferenceTrainingHook(
|
||||
classifier,
|
||||
(x_train, y_train),
|
||||
(x_test, y_test),
|
||||
classifier, (x_train, y_train), (x_test, y_test),
|
||||
input_fn_constructor,
|
||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK,
|
||||
AttackType.K_NEAREST_NEIGHBORS],
|
||||
attack_types=[
|
||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
||||
],
|
||||
tensorboard_dir=FLAGS.model_dir,
|
||||
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers)
|
||||
|
||||
|
@ -148,12 +146,15 @@ def main(unused_argv):
|
|||
classifier, (x_train, y_train), (x_test, y_test),
|
||||
input_fn_constructor,
|
||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS]
|
||||
)
|
||||
attack_types=[
|
||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
||||
])
|
||||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||
print('\n'.join([
|
||||
' %s: %.4f' % (', '.join([s, t, m]), v)
|
||||
for t, s, m, v in zip(att_types, att_slices, att_metrics, att_values)
|
||||
]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -13,10 +13,8 @@
|
|||
# limitations under the License.
|
||||
|
||||
from absl.testing import absltest
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import tf_estimator_evaluation
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResults
|
||||
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
|
||||
|
@ -55,23 +53,25 @@ class UtilsTest(absltest.TestCase):
|
|||
# Define the classifier, input_fn for training and test data
|
||||
self.classifier = tf.estimator.Estimator(model_fn=model_fn)
|
||||
self.input_fn_train = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': self.train_data}, y=self.train_labels, num_epochs=1,
|
||||
x={'x': self.train_data},
|
||||
y=self.train_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
self.input_fn_test = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': self.test_data}, y=self.test_labels, num_epochs=1,
|
||||
x={'x': self.test_data},
|
||||
y=self.test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
|
||||
def test_calculate_losses(self):
|
||||
"""Test calculating the loss."""
|
||||
pred, loss = tf_estimator_evaluation.calculate_losses(self.classifier,
|
||||
self.input_fn_train,
|
||||
self.train_labels)
|
||||
pred, loss = tf_estimator_evaluation.calculate_losses(
|
||||
self.classifier, self.input_fn_train, self.train_labels)
|
||||
self.assertEqual(pred.shape, (self.ntrain, self.nclass))
|
||||
self.assertEqual(loss.shape, (self.ntrain,))
|
||||
|
||||
pred, loss = tf_estimator_evaluation.calculate_losses(self.classifier,
|
||||
self.input_fn_test,
|
||||
self.test_labels)
|
||||
pred, loss = tf_estimator_evaluation.calculate_losses(
|
||||
self.classifier, self.input_fn_test, self.test_labels)
|
||||
self.assertEqual(pred.shape, (self.ntest, self.nclass))
|
||||
self.assertEqual(loss.shape, (self.ntest,))
|
||||
|
||||
|
@ -94,12 +94,12 @@ class UtilsTest(absltest.TestCase):
|
|||
|
||||
def test_run_attack_on_tf_estimator_model(self):
|
||||
"""Test the attack on the final models."""
|
||||
|
||||
def input_fn_constructor(x, y):
|
||||
return tf.estimator.inputs.numpy_input_fn(x={'x': x}, y=y, shuffle=False)
|
||||
|
||||
results = tf_estimator_evaluation.run_attack_on_tf_estimator_model(
|
||||
self.classifier,
|
||||
(self.train_data, self.train_labels),
|
||||
self.classifier, (self.train_data, self.train_labels),
|
||||
(self.test_data, self.test_labels),
|
||||
input_fn_constructor,
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK])
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Utility functions for membership inference attacks."""
|
||||
|
||||
import numpy as np
|
||||
|
|
|
@ -27,7 +27,7 @@ def write_to_tensorboard(writers, tags, values, step):
|
|||
|
||||
Args:
|
||||
writers: a list of tensorboard writers or one writer to be used for metrics.
|
||||
If it's a list, it should be of the same length as tags
|
||||
If it's a list, it should be of the same length as tags
|
||||
tags: a list of tags of metrics
|
||||
values: a list of values of metrics with the same length as tags
|
||||
step: step for the tensorboard summary
|
||||
|
@ -54,7 +54,7 @@ def write_to_tensorboard_tf2(writers, tags, values, step):
|
|||
|
||||
Args:
|
||||
writers: a list of tensorboard writers or one writer to be used for metrics.
|
||||
If it's a list, it should be of the same length as tags
|
||||
If it's a list, it should be of the same length as tags
|
||||
tags: a list of tags of metrics
|
||||
values: a list of values of metrics with the same length as tags
|
||||
step: step for the tensorboard summary
|
||||
|
@ -77,11 +77,10 @@ def write_to_tensorboard_tf2(writers, tags, values, step):
|
|||
writer.flush()
|
||||
|
||||
|
||||
def write_results_to_tensorboard(
|
||||
attack_results: AttackResults,
|
||||
writers: Union[tf1.summary.FileWriter, List[tf1.summary.FileWriter]],
|
||||
step: int,
|
||||
merge_classifiers: bool):
|
||||
def write_results_to_tensorboard(attack_results: AttackResults,
|
||||
writers: Union[tf1.summary.FileWriter,
|
||||
List[tf1.summary.FileWriter]],
|
||||
step: int, merge_classifiers: bool):
|
||||
"""Write attack results to tensorboard.
|
||||
|
||||
Args:
|
||||
|
@ -97,21 +96,21 @@ def write_results_to_tensorboard(
|
|||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
if merge_classifiers:
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in
|
||||
zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard([writers[t] for t in att_types],
|
||||
att_tags, att_values, step)
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard([writers[t] for t in att_types], att_tags, att_values,
|
||||
step)
|
||||
else:
|
||||
att_tags = ['attack/' + f'{s}_{t}_{m}' for t, s, m in
|
||||
zip(att_types, att_slices, att_metrics)]
|
||||
att_tags = [
|
||||
'attack/' + f'{s}_{t}_{m}'
|
||||
for t, s, m in zip(att_types, att_slices, att_metrics)
|
||||
]
|
||||
write_to_tensorboard(writers, att_tags, att_values, step)
|
||||
|
||||
|
||||
def write_results_to_tensorboard_tf2(
|
||||
attack_results: AttackResults,
|
||||
writers: Union[tf2.summary.SummaryWriter, List[tf2.summary.SummaryWriter]],
|
||||
step: int,
|
||||
merge_classifiers: bool):
|
||||
step: int, merge_classifiers: bool):
|
||||
"""Write attack results to tensorboard.
|
||||
|
||||
Args:
|
||||
|
@ -127,12 +126,12 @@ def write_results_to_tensorboard_tf2(
|
|||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
if merge_classifiers:
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in
|
||||
zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard_tf2([writers[t] for t in att_types],
|
||||
att_tags, att_values, step)
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard_tf2([writers[t] for t in att_types], att_tags,
|
||||
att_values, step)
|
||||
else:
|
||||
att_tags = ['attack/' + f'{s}_{t}_{m}' for t, s, m in
|
||||
zip(att_types, att_slices, att_metrics)]
|
||||
att_tags = [
|
||||
'attack/' + f'{s}_{t}_{m}'
|
||||
for t, s, m in zip(att_types, att_slices, att_metrics)
|
||||
]
|
||||
write_to_tensorboard_tf2(writers, att_tags, att_values, step)
|
||||
|
||||
|
|
|
@ -25,22 +25,23 @@ def compute_exposure_interpolation(
|
|||
"""Get exposure using interpolation.
|
||||
|
||||
Args:
|
||||
perplexities: a dictionary, key is number of secret repetitions,
|
||||
value is a list of perplexities
|
||||
perplexities: a dictionary, key is number of secret repetitions, value is a
|
||||
list of perplexities
|
||||
perplexities_reference: a list, perplexities of the random sequences that
|
||||
did not appear in the training data
|
||||
did not appear in the training data
|
||||
|
||||
Returns:
|
||||
The exposure of every secret measured using interpolation (not necessarily
|
||||
in the same order as the input)
|
||||
"""
|
||||
repetitions = list(perplexities.keys())
|
||||
# Concatenate all perplexities, including those for references
|
||||
perplexities_concat = np.concatenate([perplexities[r] for r in repetitions]
|
||||
+ [perplexities_reference])
|
||||
perplexities_concat = np.concatenate([perplexities[r] for r in repetitions] +
|
||||
[perplexities_reference])
|
||||
# Concatenate the number of repetitions for each secret
|
||||
repetitions_concat = np.concatenate(
|
||||
[[r] * len(perplexities[r]) for r in repetitions]
|
||||
+ [[0] * len(perplexities_reference)])
|
||||
repetitions_concat = np.concatenate([[r] * len(perplexities[r])
|
||||
for r in repetitions] +
|
||||
[[0] * len(perplexities_reference)])
|
||||
|
||||
# Sort the repetition list according to the corresponding perplexity
|
||||
idx = np.argsort(perplexities_concat)
|
||||
|
@ -53,8 +54,10 @@ def compute_exposure_interpolation(
|
|||
# (repetitions_concat == 0).
|
||||
cum_sum = np.cumsum(repetitions_concat == 0)
|
||||
ranks = {r: cum_sum[repetitions_concat == r] + 1 for r in repetitions}
|
||||
exposures = {r: np.log2(len(perplexities_reference)) - np.log2(ranks[r])
|
||||
for r in repetitions}
|
||||
exposures = {
|
||||
r: np.log2(len(perplexities_reference)) - np.log2(ranks[r])
|
||||
for r in repetitions
|
||||
}
|
||||
return exposures
|
||||
|
||||
|
||||
|
@ -64,10 +67,11 @@ def compute_exposure_extrapolation(
|
|||
"""Get exposure using extrapolation.
|
||||
|
||||
Args:
|
||||
perplexities: a dictionary, key is number of secret repetitions,
|
||||
value is a list of perplexities
|
||||
perplexities: a dictionary, key is number of secret repetitions, value is a
|
||||
list of perplexities
|
||||
perplexities_reference: a list, perplexities of the random sequences that
|
||||
did not appear in the training data
|
||||
did not appear in the training data
|
||||
|
||||
Returns:
|
||||
The exposure of every secret measured using extrapolation
|
||||
"""
|
||||
|
|
|
@ -15,7 +15,6 @@
|
|||
from absl.testing import absltest
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
|
||||
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.exposures import compute_exposure_extrapolation
|
||||
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.exposures import compute_exposure_interpolation
|
||||
|
||||
|
@ -28,9 +27,11 @@ class UtilsTest(absltest.TestCase):
|
|||
|
||||
def test_exposure_interpolation(self):
|
||||
"""Test exposure by interpolation."""
|
||||
perplexities = {1: [0, 0.1], # smallest perplexities
|
||||
2: [20.0], # largest perplexities
|
||||
5: [3.5]} # rank = 4
|
||||
perplexities = {
|
||||
1: [0, 0.1], # smallest perplexities
|
||||
2: [20.0], # largest perplexities
|
||||
5: [3.5]
|
||||
} # rank = 4
|
||||
perplexities_reference = [float(x) for x in range(1, 17)]
|
||||
exposures = compute_exposure_interpolation(perplexities,
|
||||
perplexities_reference)
|
||||
|
@ -41,7 +42,8 @@ class UtilsTest(absltest.TestCase):
|
|||
expected_exposures = {
|
||||
1: np.array([exposure_largest] * 2),
|
||||
2: np.array([exposure_smallest]),
|
||||
5: np.array([np.log2(num_perplexities_reference) - np.log2(4)])}
|
||||
5: np.array([np.log2(num_perplexities_reference) - np.log2(4)])
|
||||
}
|
||||
|
||||
self.assertEqual(exposures.keys(), expected_exposures.keys())
|
||||
for r in exposures.keys():
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Generate random sequences."""
|
||||
|
||||
import itertools
|
||||
|
@ -21,7 +20,9 @@ from dataclasses import dataclass
|
|||
import numpy as np
|
||||
|
||||
|
||||
def generate_random_sequences(vocab: List[str], pattern: str, n: int,
|
||||
def generate_random_sequences(vocab: List[str],
|
||||
pattern: str,
|
||||
n: int,
|
||||
seed: int = 1) -> List[str]:
|
||||
"""Generate random sequences.
|
||||
|
||||
|
@ -35,6 +36,7 @@ def generate_random_sequences(vocab: List[str], pattern: str, n: int,
|
|||
Returns:
|
||||
A list of different random sequences from the given vocabulary
|
||||
"""
|
||||
|
||||
def count_placeholder(pattern):
|
||||
return sum([x[1] is not None for x in string.Formatter().parse(pattern)])
|
||||
|
||||
|
@ -103,7 +105,8 @@ def construct_secret(secret_config: SecretConfig, seqs: List[str]) -> Secrets:
|
|||
Args:
|
||||
secret_config: configuration of secret.
|
||||
seqs: a list of random sequences that will be used for secrets and
|
||||
references.
|
||||
references.
|
||||
|
||||
Returns:
|
||||
a secret instance.
|
||||
"""
|
||||
|
@ -116,9 +119,10 @@ def construct_secret(secret_config: SecretConfig, seqs: List[str]) -> Secrets:
|
|||
secret_config.num_repetitions, secret_config.num_secrets_for_repetitions):
|
||||
secrets[num_repetition] = seqs[i:i + num_secrets]
|
||||
i += num_secrets
|
||||
return Secrets(config=secret_config,
|
||||
secrets=secrets,
|
||||
references=seqs[-secret_config.num_references:])
|
||||
return Secrets(
|
||||
config=secret_config,
|
||||
secrets=secrets,
|
||||
references=seqs[-secret_config.num_references:])
|
||||
|
||||
|
||||
def generate_secrets_and_references(secret_configs: List[SecretConfig],
|
||||
|
@ -128,6 +132,7 @@ def generate_secrets_and_references(secret_configs: List[SecretConfig],
|
|||
Args:
|
||||
secret_configs: a list of secret configurations.
|
||||
seed: random seed.
|
||||
|
||||
Returns:
|
||||
A list of secret instances.
|
||||
"""
|
||||
|
|
|
@ -12,10 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets."""
|
||||
|
||||
from absl.testing import absltest
|
||||
|
||||
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import construct_secret
|
||||
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import generate_random_sequences
|
||||
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import generate_secrets_and_references
|
||||
|
@ -32,27 +29,34 @@ class UtilsTest(absltest.TestCase):
|
|||
"""Test generate_random_sequences."""
|
||||
# Test when n is larger than total number of possible sequences.
|
||||
seqs = generate_random_sequences(['A', 'b', 'c'], '{}+{}', 10, seed=27)
|
||||
expected_seqs = ['A+c', 'c+c', 'b+b', 'A+b', 'b+c',
|
||||
'c+A', 'c+b', 'A+A', 'b+A']
|
||||
expected_seqs = [
|
||||
'A+c', 'c+c', 'b+b', 'A+b', 'b+c', 'c+A', 'c+b', 'A+A', 'b+A'
|
||||
]
|
||||
self.assertEqual(seqs, expected_seqs)
|
||||
|
||||
# Test when n is smaller than total number of possible sequences.
|
||||
seqs = generate_random_sequences(list('01234'), 'prefix {}{}{}?', 8, seed=9)
|
||||
expected_seqs = ['prefix 143?', 'prefix 031?', 'prefix 302?', 'prefix 042?',
|
||||
'prefix 404?', 'prefix 024?', 'prefix 021?', 'prefix 403?']
|
||||
expected_seqs = [
|
||||
'prefix 143?', 'prefix 031?', 'prefix 302?', 'prefix 042?',
|
||||
'prefix 404?', 'prefix 024?', 'prefix 021?', 'prefix 403?'
|
||||
]
|
||||
self.assertEqual(seqs, expected_seqs)
|
||||
|
||||
def test_construct_secret(self):
|
||||
secret_config = SecretConfig(vocab=None, pattern='',
|
||||
num_repetitions=[1, 2, 8],
|
||||
num_secrets_for_repetitions=[2, 3, 1],
|
||||
num_references=3)
|
||||
secret_config = SecretConfig(
|
||||
vocab=None,
|
||||
pattern='',
|
||||
num_repetitions=[1, 2, 8],
|
||||
num_secrets_for_repetitions=[2, 3, 1],
|
||||
num_references=3)
|
||||
seqs = list('0123456789')
|
||||
secrets = construct_secret(secret_config, seqs)
|
||||
self.assertEqual(secrets.config, secret_config)
|
||||
self.assertDictEqual(secrets.secrets, {1: ['0', '1'],
|
||||
2: ['2', '3', '4'],
|
||||
8: ['5']})
|
||||
self.assertDictEqual(secrets.secrets, {
|
||||
1: ['0', '1'],
|
||||
2: ['2', '3', '4'],
|
||||
8: ['5']
|
||||
})
|
||||
self.assertEqual(secrets.references, ['7', '8', '9'])
|
||||
|
||||
# Test when the number of elements in seqs is not enough.
|
||||
|
@ -61,29 +65,36 @@ class UtilsTest(absltest.TestCase):
|
|||
|
||||
def test_generate_secrets_and_references(self):
|
||||
secret_configs = [
|
||||
SecretConfig(vocab=['w1', 'w2', 'w3'], pattern='{} {} suf',
|
||||
num_repetitions=[1, 12],
|
||||
num_secrets_for_repetitions=[2, 1],
|
||||
num_references=3),
|
||||
SecretConfig(vocab=['W 1', 'W 2', 'W 3'], pattern='{}-{}',
|
||||
num_repetitions=[1, 2, 8],
|
||||
num_secrets_for_repetitions=[2, 3, 1],
|
||||
num_references=3)
|
||||
SecretConfig(
|
||||
vocab=['w1', 'w2', 'w3'],
|
||||
pattern='{} {} suf',
|
||||
num_repetitions=[1, 12],
|
||||
num_secrets_for_repetitions=[2, 1],
|
||||
num_references=3),
|
||||
SecretConfig(
|
||||
vocab=['W 1', 'W 2', 'W 3'],
|
||||
pattern='{}-{}',
|
||||
num_repetitions=[1, 2, 8],
|
||||
num_secrets_for_repetitions=[2, 3, 1],
|
||||
num_references=3)
|
||||
]
|
||||
secrets = generate_secrets_and_references(secret_configs, seed=27)
|
||||
self.assertEqual(secrets[0].config, secret_configs[0])
|
||||
self.assertDictEqual(secrets[0].secrets, {1: ['w3 w2 suf', 'w2 w1 suf'],
|
||||
12: ['w1 w1 suf']})
|
||||
self.assertDictEqual(secrets[0].secrets, {
|
||||
1: ['w3 w2 suf', 'w2 w1 suf'],
|
||||
12: ['w1 w1 suf']
|
||||
})
|
||||
self.assertEqual(secrets[0].references,
|
||||
['w2 w3 suf', 'w2 w2 suf', 'w3 w1 suf'])
|
||||
|
||||
self.assertEqual(secrets[1].config, secret_configs[1])
|
||||
self.assertDictEqual(secrets[1].secrets,
|
||||
{1: ['W 3-W 2', 'W 1-W 3'],
|
||||
2: ['W 3-W 1', 'W 2-W 1', 'W 1-W 1'],
|
||||
8: ['W 2-W 2']})
|
||||
self.assertEqual(secrets[1].references,
|
||||
['W 2-W 3', 'W 3-W 3', 'W 1-W 2'])
|
||||
self.assertDictEqual(
|
||||
secrets[1].secrets, {
|
||||
1: ['W 3-W 2', 'W 1-W 3'],
|
||||
2: ['W 3-W 1', 'W 2-W 1', 'W 1-W 1'],
|
||||
8: ['W 2-W 2']
|
||||
})
|
||||
self.assertEqual(secrets[1].references, ['W 2-W 3', 'W 3-W 3', 'W 1-W 2'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -27,10 +27,14 @@ n_samples = 10
|
|||
input_dim = 2
|
||||
n_outputs = 1
|
||||
# Create binary classification dataset:
|
||||
x_stack = [tf.constant(-1, tf.float32, (n_samples, input_dim)),
|
||||
tf.constant(1, tf.float32, (n_samples, input_dim))]
|
||||
y_stack = [tf.constant(0, tf.float32, (n_samples, 1)),
|
||||
tf.constant(1, tf.float32, (n_samples, 1))]
|
||||
x_stack = [
|
||||
tf.constant(-1, tf.float32, (n_samples, input_dim)),
|
||||
tf.constant(1, tf.float32, (n_samples, input_dim))
|
||||
]
|
||||
y_stack = [
|
||||
tf.constant(0, tf.float32, (n_samples, 1)),
|
||||
tf.constant(1, tf.float32, (n_samples, 1))
|
||||
]
|
||||
x, y = tf.concat(x_stack, 0), tf.concat(y_stack, 0)
|
||||
print(x.shape, y.shape)
|
||||
generator = tf.data.Dataset.from_tensor_slices((x, y))
|
||||
|
@ -86,14 +90,15 @@ n_samples = None # default, if it cannot be iferred, specify this
|
|||
epsilon = 2
|
||||
noise_distribution = 'laplace'
|
||||
|
||||
bolt.fit(x,
|
||||
y,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
epochs=2)
|
||||
bolt.fit(
|
||||
x,
|
||||
y,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
epochs=2)
|
||||
# -------
|
||||
# We may also train a generator object, or try different optimizers and loss
|
||||
# functions. Below, we will see that we must pass the number of samples as the
|
||||
|
@ -109,25 +114,27 @@ n_samples = None # default, if it cannot be iferred, specify this
|
|||
epsilon = 2
|
||||
noise_distribution = 'laplace'
|
||||
try:
|
||||
bolt.fit(generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
bolt.fit(
|
||||
generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
# -------
|
||||
# And now, re running with the parameter set.
|
||||
# -------
|
||||
n_samples = 20
|
||||
bolt.fit_generator(generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
bolt.fit_generator(
|
||||
generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
# -------
|
||||
# You don't have to use the BoltOn model to use the BoltOn method.
|
||||
# There are only a few requirements:
|
||||
|
@ -145,8 +152,8 @@ class TestModel(tf.keras.Model): # pylint: disable=abstract-method
|
|||
|
||||
def __init__(self, reg_layer, number_of_outputs=1):
|
||||
super().__init__(name='test')
|
||||
self.output_layer = tf.keras.layers.Dense(number_of_outputs,
|
||||
kernel_regularizer=reg_layer)
|
||||
self.output_layer = tf.keras.layers.Dense(
|
||||
number_of_outputs, kernel_regularizer=reg_layer)
|
||||
|
||||
def call(self, inputs): # pylint: disable=arguments-differ
|
||||
return self.output_layer(inputs)
|
||||
|
@ -180,6 +187,5 @@ with optimizer(
|
|||
layers=test_model.layers,
|
||||
class_weights=class_weights,
|
||||
n_samples=n_samples,
|
||||
batch_size=batch_size
|
||||
) as _:
|
||||
batch_size=batch_size) as _:
|
||||
test_model.fit(x, y, batch_size=batch_size, epochs=2)
|
||||
|
|
|
@ -86,12 +86,10 @@ def cnn_model_fn(features, labels, mode, params): # pylint: disable=unused-argu
|
|||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
|
@ -100,8 +98,8 @@ def main(unused_argv):
|
|||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn,
|
||||
model_dir=FLAGS.model_dir)
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = 60000 // FLAGS.batch_size
|
||||
|
|
|
@ -25,16 +25,18 @@ from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescent
|
|||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
tf.enable_eager_execution()
|
||||
|
||||
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
||||
flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_integer(
|
||||
'microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
|
@ -45,10 +47,11 @@ def compute_epsilon(steps):
|
|||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
rdp = compute_rdp(q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
|
||||
|
@ -64,22 +67,20 @@ def main(_):
|
|||
|
||||
# Create a dataset object and batch for the training data
|
||||
dataset = tf.data.Dataset.from_tensor_slices(
|
||||
(tf.cast(train_images[..., tf.newaxis]/255, tf.float32),
|
||||
tf.cast(train_labels, tf.int64)))
|
||||
(tf.cast(train_images[..., tf.newaxis] / 255,
|
||||
tf.float32), tf.cast(train_labels, tf.int64)))
|
||||
dataset = dataset.shuffle(1000).batch(FLAGS.batch_size)
|
||||
|
||||
# Create a dataset object and batch for the test data
|
||||
eval_dataset = tf.data.Dataset.from_tensor_slices(
|
||||
(tf.cast(test_images[..., tf.newaxis]/255, tf.float32),
|
||||
tf.cast(test_labels, tf.int64)))
|
||||
(tf.cast(test_images[..., tf.newaxis] / 255,
|
||||
tf.float32), tf.cast(test_labels, tf.int64)))
|
||||
eval_dataset = eval_dataset.batch(10000)
|
||||
|
||||
# Define the model using tf.keras.layers
|
||||
mnist_model = tf.keras.Sequential([
|
||||
tf.keras.layers.Conv2D(16, 8,
|
||||
strides=2,
|
||||
padding='same',
|
||||
activation='relu'),
|
||||
tf.keras.layers.Conv2D(
|
||||
16, 8, strides=2, padding='same', activation='relu'),
|
||||
tf.keras.layers.MaxPool2D(2, 1),
|
||||
tf.keras.layers.Conv2D(32, 4, strides=2, activation='relu'),
|
||||
tf.keras.layers.MaxPool2D(2, 1),
|
||||
|
@ -119,8 +120,8 @@ def main(_):
|
|||
return loss
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
grads_and_vars = opt.compute_gradients(loss_fn, var_list,
|
||||
gradient_tape=gradient_tape)
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
loss_fn, var_list, gradient_tape=gradient_tape)
|
||||
else:
|
||||
grads_and_vars = opt.compute_gradients(loss_fn, var_list)
|
||||
|
||||
|
@ -140,5 +141,6 @@ def main(_):
|
|||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
||||
|
|
|
@ -47,10 +47,11 @@ def compute_epsilon(steps):
|
|||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
rdp = compute_rdp(q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
|
||||
|
@ -91,16 +92,16 @@ def main(unused_argv):
|
|||
|
||||
# Define a sequential Keras model
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Conv2D(16, 8,
|
||||
strides=2,
|
||||
padding='same',
|
||||
activation='relu',
|
||||
input_shape=(28, 28, 1)),
|
||||
tf.keras.layers.Conv2D(
|
||||
16,
|
||||
8,
|
||||
strides=2,
|
||||
padding='same',
|
||||
activation='relu',
|
||||
input_shape=(28, 28, 1)),
|
||||
tf.keras.layers.MaxPool2D(2, 1),
|
||||
tf.keras.layers.Conv2D(32, 4,
|
||||
strides=2,
|
||||
padding='valid',
|
||||
activation='relu'),
|
||||
tf.keras.layers.Conv2D(
|
||||
32, 4, strides=2, padding='valid', activation='relu'),
|
||||
tf.keras.layers.MaxPool2D(2, 1),
|
||||
tf.keras.layers.Flatten(),
|
||||
tf.keras.layers.Dense(32, activation='relu'),
|
||||
|
@ -124,10 +125,12 @@ def main(unused_argv):
|
|||
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
||||
|
||||
# Train model with Keras
|
||||
model.fit(train_data, train_labels,
|
||||
epochs=FLAGS.epochs,
|
||||
validation_data=(test_data, test_labels),
|
||||
batch_size=FLAGS.batch_size)
|
||||
model.fit(
|
||||
train_data,
|
||||
train_labels,
|
||||
epochs=FLAGS.epochs,
|
||||
validation_data=(test_data, test_labels),
|
||||
batch_size=FLAGS.batch_size)
|
||||
|
||||
# Compute the privacy budget expended.
|
||||
if FLAGS.dpsgd:
|
||||
|
@ -136,5 +139,6 @@ def main(unused_argv):
|
|||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
||||
|
|
|
@ -22,7 +22,6 @@ from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
|||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
|
@ -50,10 +49,11 @@ def compute_epsilon(steps):
|
|||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / NUM_TRAIN_EXAMPLES
|
||||
rdp = compute_rdp(q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to approximate 1 / (number of training points).
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
|
||||
|
@ -63,15 +63,11 @@ def cnn_model_fn(features, labels, mode):
|
|||
|
||||
# Define CNN architecture using tf.keras.layers.
|
||||
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
||||
y = tf.keras.layers.Conv2D(16, 8,
|
||||
strides=2,
|
||||
padding='same',
|
||||
activation='relu').apply(input_layer)
|
||||
y = tf.keras.layers.Conv2D(
|
||||
16, 8, strides=2, padding='same', activation='relu').apply(input_layer)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Conv2D(32, 4,
|
||||
strides=2,
|
||||
padding='valid',
|
||||
activation='relu').apply(y)
|
||||
y = tf.keras.layers.Conv2D(
|
||||
32, 4, strides=2, padding='valid', activation='relu').apply(y)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Flatten().apply(y)
|
||||
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
|
||||
|
@ -106,22 +102,19 @@ def cnn_model_fn(features, labels, mode):
|
|||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
train_op=train_op)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def load_mnist():
|
||||
|
@ -155,8 +148,8 @@ def main(unused_argv):
|
|||
train_data, train_labels, test_data, test_labels = load_mnist()
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn,
|
||||
model_dir=FLAGS.model_dir)
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
|
@ -166,10 +159,7 @@ def main(unused_argv):
|
|||
num_epochs=FLAGS.epochs,
|
||||
shuffle=True)
|
||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data},
|
||||
y=test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = NUM_TRAIN_EXAMPLES // FLAGS.batch_size
|
||||
|
@ -189,5 +179,6 @@ def main(unused_argv):
|
|||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
||||
|
|
|
@ -56,8 +56,8 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
|
|||
logits = tf.keras.layers.Dense(
|
||||
units=nclasses,
|
||||
kernel_regularizer=tf.keras.regularizers.L2(l2=FLAGS.regularizer),
|
||||
bias_regularizer=tf.keras.regularizers.L2(l2=FLAGS.regularizer)).apply(
|
||||
input_layer)
|
||||
bias_regularizer=tf.keras.regularizers.L2(
|
||||
l2=FLAGS.regularizer)).apply(input_layer)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
|
@ -166,8 +166,7 @@ def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
|
|||
# an option.
|
||||
rdp = [order * coef for order in orders]
|
||||
eps, _, _ = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(
|
||||
p * 100, eps, delta))
|
||||
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta))
|
||||
|
||||
# Compute privacy guarantees for the Sampled Gaussian Mechanism.
|
||||
rdp_sgm = compute_rdp(batch_size / samples, noise_multiplier,
|
||||
|
@ -234,5 +233,6 @@ def main(unused_argv):
|
|||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
||||
|
|
|
@ -114,7 +114,7 @@ def nn_model_fn(features, labels, mode):
|
|||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
if mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'rmse':
|
||||
|
|
|
@ -28,23 +28,19 @@ def cnn_model_fn(features, labels, mode):
|
|||
|
||||
# Define CNN architecture using tf.keras.layers.
|
||||
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
||||
y = tf.keras.layers.Conv2D(16, 8,
|
||||
strides=2,
|
||||
padding='same',
|
||||
activation='relu').apply(input_layer)
|
||||
y = tf.keras.layers.Conv2D(
|
||||
16, 8, strides=2, padding='same', activation='relu').apply(input_layer)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Conv2D(32, 4,
|
||||
strides=2,
|
||||
padding='valid',
|
||||
activation='relu').apply(y)
|
||||
y = tf.keras.layers.Conv2D(
|
||||
32, 4, strides=2, padding='valid', activation='relu').apply(y)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Flatten().apply(y)
|
||||
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
|
||||
logits = tf.keras.layers.Dense(10).apply(y)
|
||||
|
||||
# Calculate loss as a vector and as its average across minibatch.
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,
|
||||
logits=logits)
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits)
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
|
@ -53,21 +49,18 @@ def cnn_model_fn(features, labels, mode):
|
|||
opt_loss = scalar_loss
|
||||
global_step = tf.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
train_op=train_op)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def load_mnist():
|
||||
|
@ -109,10 +102,7 @@ def main(unused_argv):
|
|||
num_epochs=FLAGS.epochs,
|
||||
shuffle=True)
|
||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data},
|
||||
y=test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = 60000 // FLAGS.batch_size
|
||||
|
@ -125,5 +115,6 @@ def main(unused_argv):
|
|||
test_accuracy = eval_results['accuracy']
|
||||
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.app.run()
|
||||
|
|
Loading…
Reference in a new issue