Implement the tree aggregation query in TFP.
The core `tree_aggregation` algorithm is from https://github.com/google-research/federated/tree/master/dp_ftrl. The tree_aggregation_query is partially developed by Monica Ribero Diaz when she was a student researcher at Google. PiperOrigin-RevId: 376953302
This commit is contained in:
parent
331a2911ac
commit
944dcd0e17
5 changed files with 1493 additions and 0 deletions
|
@ -47,6 +47,9 @@ else:
|
||||||
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import QuantileEstimatorQuery
|
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import QuantileEstimatorQuery
|
||||||
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import NoPrivacyQuantileEstimatorQuery
|
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import NoPrivacyQuantileEstimatorQuery
|
||||||
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
|
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
|
||||||
|
from tensorflow_privacy.privacy.dp_query import tree_aggregation
|
||||||
|
from tensorflow_privacy.privacy.dp_query.tree_aggregation_query import TreeCumulativeSumQuery
|
||||||
|
from tensorflow_privacy.privacy.dp_query.tree_aggregation_query import TreeResidualSumQuery
|
||||||
|
|
||||||
# Estimators
|
# Estimators
|
||||||
from tensorflow_privacy.privacy.estimators.dnn import DNNClassifier
|
from tensorflow_privacy.privacy.estimators.dnn import DNNClassifier
|
||||||
|
|
367
tensorflow_privacy/privacy/dp_query/tree_aggregation.py
Normal file
367
tensorflow_privacy/privacy/dp_query/tree_aggregation.py
Normal file
|
@ -0,0 +1,367 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Tree aggregation algorithm.
|
||||||
|
|
||||||
|
This algorithm computes cumulative sums of noise based on tree aggregation. When
|
||||||
|
using an appropriate noise function (e.g., Gaussian noise), it allows for
|
||||||
|
efficient differentially private algorithms under continual observation, without
|
||||||
|
prior subsampling or shuffling assumptions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import abc
|
||||||
|
from typing import Any, Callable, Collection, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import attr
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
|
class ValueGenerator(metaclass=abc.ABCMeta):
|
||||||
|
"""Base class establishing interface for stateful value generation."""
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def initialize(self):
|
||||||
|
"""Returns initialized state."""
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def next(self, state):
|
||||||
|
"""Returns tree node value and updated state."""
|
||||||
|
|
||||||
|
|
||||||
|
class GaussianNoiseGenerator(ValueGenerator):
|
||||||
|
"""Gaussian noise generator with counter as pseudo state."""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
noise_std: float,
|
||||||
|
specs: Collection[tf.TensorSpec],
|
||||||
|
seed: Optional[int] = None):
|
||||||
|
self.noise_std = noise_std
|
||||||
|
self.specs = specs
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def initialize(self):
|
||||||
|
if self.seed is None:
|
||||||
|
return tf.cast(
|
||||||
|
tf.stack([
|
||||||
|
tf.math.floor(tf.timestamp() * 1e6),
|
||||||
|
tf.math.floor(tf.math.log(tf.timestamp() * 1e6))
|
||||||
|
]),
|
||||||
|
dtype=tf.int64)
|
||||||
|
else:
|
||||||
|
return tf.constant(self.seed, dtype=tf.int64, shape=(2,))
|
||||||
|
|
||||||
|
def next(self, state):
|
||||||
|
flat_structure = tf.nest.flatten(self.specs)
|
||||||
|
flat_seeds = [state + i for i in range(len(flat_structure))]
|
||||||
|
nest_seeds = tf.nest.pack_sequence_as(self.specs, flat_seeds)
|
||||||
|
|
||||||
|
def _get_noise(spec, seed):
|
||||||
|
return tf.random.stateless_normal(
|
||||||
|
shape=spec.shape, seed=seed, stddev=self.noise_std)
|
||||||
|
|
||||||
|
nest_noise = tf.nest.map_structure(_get_noise, self.specs, nest_seeds)
|
||||||
|
return nest_noise, flat_seeds[-1] + 1
|
||||||
|
|
||||||
|
|
||||||
|
class StatelessValueGenerator(ValueGenerator):
|
||||||
|
"""A wrapper for stateless value generator initialized by a no-arg function."""
|
||||||
|
|
||||||
|
def __init__(self, value_fn):
|
||||||
|
self.value_fn = value_fn
|
||||||
|
|
||||||
|
def initialize(self):
|
||||||
|
return ()
|
||||||
|
|
||||||
|
def next(self, state):
|
||||||
|
return self.value_fn(), state
|
||||||
|
|
||||||
|
|
||||||
|
@attr.s(eq=False, frozen=True, slots=True)
|
||||||
|
class TreeState(object):
|
||||||
|
"""Class defining state of the tree.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
level_buffer: A `tf.Tensor` saves the last node value of the left child
|
||||||
|
entered for the tree levels recorded in `level_buffer_idx`.
|
||||||
|
level_buffer_idx: A `tf.Tensor` for the tree level index of the
|
||||||
|
`level_buffer`. The tree level index starts from 0, i.e.,
|
||||||
|
`level_buffer[0]` when `level_buffer_idx[0]==0` recorded the noise value
|
||||||
|
for the most recent leaf node.
|
||||||
|
value_generator_state: State of a stateful `ValueGenerator` for tree node.
|
||||||
|
"""
|
||||||
|
level_buffer = attr.ib(type=tf.Tensor)
|
||||||
|
level_buffer_idx = attr.ib(type=tf.Tensor)
|
||||||
|
value_generator_state = attr.ib(type=Any)
|
||||||
|
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def get_step_idx(state: TreeState) -> tf.Tensor:
|
||||||
|
"""Returns the current leaf node index based on `TreeState.level_buffer_idx`."""
|
||||||
|
step_idx = tf.constant(-1, dtype=tf.int32)
|
||||||
|
for i in tf.range(len(state.level_buffer_idx)):
|
||||||
|
step_idx += tf.math.pow(2, state.level_buffer_idx[i])
|
||||||
|
return step_idx
|
||||||
|
|
||||||
|
|
||||||
|
class TreeAggregator():
|
||||||
|
"""Tree aggregator to compute accumulated noise in private algorithms.
|
||||||
|
|
||||||
|
This class implements the tree aggregation algorithm for noise values to
|
||||||
|
efficiently privatize streaming algorithms based on Dwork et al. (2010)
|
||||||
|
https://dl.acm.org/doi/pdf/10.1145/1806689.1806787. A buffer at the scale of
|
||||||
|
tree depth is maintained and updated when a new conceptual leaf node arrives.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
value_generator: A `ValueGenerator` or a no-arg function to generate a noise
|
||||||
|
value for each tree node.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, value_generator: Union[ValueGenerator, Callable[[], Any]]):
|
||||||
|
"""Initialize the aggregator with a noise generator."""
|
||||||
|
if isinstance(value_generator, ValueGenerator):
|
||||||
|
self.value_generator = value_generator
|
||||||
|
else:
|
||||||
|
self.value_generator = StatelessValueGenerator(value_generator)
|
||||||
|
|
||||||
|
def init_state(self) -> TreeState:
|
||||||
|
"""Returns initial `TreeState`.
|
||||||
|
|
||||||
|
Initializes `TreeState` for a tree of a single leaf node: the respective
|
||||||
|
initial node value in `TreeState.level_buffer` is generated by the value
|
||||||
|
generator function, and the node index is 0.
|
||||||
|
"""
|
||||||
|
value_generator_state = self.value_generator.initialize()
|
||||||
|
level_buffer_idx = tf.TensorArray(dtype=tf.int32, size=1, dynamic_size=True)
|
||||||
|
level_buffer_idx = level_buffer_idx.write(0, tf.constant(
|
||||||
|
0, dtype=tf.int32)).stack()
|
||||||
|
|
||||||
|
new_val, value_generator_state = self.value_generator.next(
|
||||||
|
value_generator_state)
|
||||||
|
level_buffer_structure = tf.nest.map_structure(
|
||||||
|
lambda x: tf.TensorArray(dtype=tf.float32, size=1, dynamic_size=True),
|
||||||
|
new_val)
|
||||||
|
level_buffer = tf.nest.map_structure(lambda x, y: x.write(0, y).stack(),
|
||||||
|
level_buffer_structure, new_val)
|
||||||
|
|
||||||
|
return TreeState(
|
||||||
|
level_buffer=level_buffer,
|
||||||
|
level_buffer_idx=level_buffer_idx,
|
||||||
|
value_generator_state=value_generator_state)
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def _get_cumsum(self, level_buffer: Collection[tf.Tensor]) -> tf.Tensor:
|
||||||
|
return tf.nest.map_structure(lambda x: tf.reduce_sum(x, axis=0),
|
||||||
|
level_buffer)
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def get_cumsum_and_update(self,
|
||||||
|
state: TreeState) -> Tuple[tf.Tensor, TreeState]:
|
||||||
|
"""Returns tree aggregated value and updated `TreeState` for one step.
|
||||||
|
|
||||||
|
`TreeState` is updated to prepare for accepting the *next* leaf node. Note
|
||||||
|
that `get_step_idx` can be called to get the current index of the leaf node
|
||||||
|
before calling this function. This function accept state for the current
|
||||||
|
leaf node and prepare for the next leaf node because TFF prefers to know
|
||||||
|
the types of state at initialization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state: `TreeState` for the current leaf node, index can be queried by
|
||||||
|
`tree_aggregation.get_step_idx(state.level_buffer_idx)`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
level_buffer_idx, level_buffer, value_generator_state = (
|
||||||
|
state.level_buffer_idx, state.level_buffer, state.value_generator_state)
|
||||||
|
cumsum = self._get_cumsum(level_buffer)
|
||||||
|
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda x: tf.TensorArray( # pylint: disable=g-long-lambda
|
||||||
|
dtype=tf.float32,
|
||||||
|
size=0,
|
||||||
|
dynamic_size=True),
|
||||||
|
level_buffer)
|
||||||
|
new_level_buffer_idx = tf.TensorArray(
|
||||||
|
dtype=tf.int32, size=0, dynamic_size=True)
|
||||||
|
# `TreeState` stores the left child node necessary for computing the cumsum
|
||||||
|
# noise. To update the buffer, let us find the lowest level that will switch
|
||||||
|
# from a right child (not in the buffer) to a left child.
|
||||||
|
level_idx = 0 # new leaf node starts from level 0
|
||||||
|
while tf.less(level_idx, len(level_buffer_idx)) and tf.equal(
|
||||||
|
level_idx, level_buffer_idx[level_idx]):
|
||||||
|
level_idx += 1
|
||||||
|
# Left child nodes for the level lower than `level_idx` will be removed
|
||||||
|
# and a new node will be created at `level_idx`.
|
||||||
|
write_buffer_idx = 0
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.write(write_buffer_idx,
|
||||||
|
level_idx)
|
||||||
|
new_value, value_generator_state = self.value_generator.next(
|
||||||
|
value_generator_state)
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda x, y: x.write(write_buffer_idx, y), new_level_buffer, new_value)
|
||||||
|
write_buffer_idx += 1
|
||||||
|
# Buffer index will now different from level index for the old `TreeState`
|
||||||
|
# i.e., `level_buffer_idx[level_idx] != level_idx`. Rename parameter to
|
||||||
|
# buffer index for clarity.
|
||||||
|
buffer_idx = level_idx
|
||||||
|
while tf.less(buffer_idx, len(level_buffer_idx)):
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.write(
|
||||||
|
write_buffer_idx, level_buffer_idx[buffer_idx])
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda nb, b: nb.write(write_buffer_idx, b[buffer_idx]),
|
||||||
|
new_level_buffer, level_buffer)
|
||||||
|
buffer_idx += 1
|
||||||
|
write_buffer_idx += 1
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.stack()
|
||||||
|
new_level_buffer = tf.nest.map_structure(lambda x: x.stack(),
|
||||||
|
new_level_buffer)
|
||||||
|
new_state = TreeState(
|
||||||
|
level_buffer=new_level_buffer,
|
||||||
|
level_buffer_idx=new_level_buffer_idx,
|
||||||
|
value_generator_state=value_generator_state)
|
||||||
|
return cumsum, new_state
|
||||||
|
|
||||||
|
|
||||||
|
class EfficientTreeAggregator():
|
||||||
|
"""Efficient tree aggregator to compute accumulated noise.
|
||||||
|
|
||||||
|
This class implements the efficient tree aggregation algorithm based on
|
||||||
|
Honaker 2015 "Efficient Use of Differentially Private Binary Trees".
|
||||||
|
The noise standard deviation for the note at depth d is roughly
|
||||||
|
`sigma * sqrt(2^{d-1}/(2^d-1))`. which becomes `sigma / sqrt(2)` when
|
||||||
|
the tree is very tall.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
value_generator: A `ValueGenerator` or a no-arg function to generate a noise
|
||||||
|
value for each tree node.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, value_generator: Union[ValueGenerator, Callable[[], Any]]):
|
||||||
|
"""Initialize the aggregator with a noise generator."""
|
||||||
|
if isinstance(value_generator, ValueGenerator):
|
||||||
|
self.value_generator = value_generator
|
||||||
|
else:
|
||||||
|
self.value_generator = StatelessValueGenerator(value_generator)
|
||||||
|
|
||||||
|
def init_state(self) -> TreeState:
|
||||||
|
"""Returns initial `TreeState`.
|
||||||
|
|
||||||
|
Initializes `TreeState` for a tree of a single leaf node: the respective
|
||||||
|
initial node value in `TreeState.level_buffer` is generated by the value
|
||||||
|
generator function, and the node index is 0.
|
||||||
|
"""
|
||||||
|
value_generator_state = self.value_generator.initialize()
|
||||||
|
level_buffer_idx = tf.TensorArray(dtype=tf.int32, size=1, dynamic_size=True)
|
||||||
|
level_buffer_idx = level_buffer_idx.write(0, tf.constant(
|
||||||
|
0, dtype=tf.int32)).stack()
|
||||||
|
|
||||||
|
new_val, value_generator_state = self.value_generator.next(
|
||||||
|
value_generator_state)
|
||||||
|
level_buffer_structure = tf.nest.map_structure(
|
||||||
|
lambda x: tf.TensorArray(dtype=tf.float32, size=1, dynamic_size=True),
|
||||||
|
new_val)
|
||||||
|
level_buffer = tf.nest.map_structure(lambda x, y: x.write(0, y).stack(),
|
||||||
|
level_buffer_structure, new_val)
|
||||||
|
|
||||||
|
return TreeState(
|
||||||
|
level_buffer=level_buffer,
|
||||||
|
level_buffer_idx=level_buffer_idx,
|
||||||
|
value_generator_state=value_generator_state)
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def _get_cumsum(self, state: TreeState) -> tf.Tensor:
|
||||||
|
"""Returns weighted cumulative sum of noise based on `TreeState`."""
|
||||||
|
# Note that the buffer saved recursive results of the weighted average of
|
||||||
|
# the node value (v) and its two children (l, r), i.e., node = v + (l+r)/2.
|
||||||
|
# To get unbiased estimation with reduced variance for each node, we have to
|
||||||
|
# reweight it by 1/(2-2^{-d}) where d is the depth of the node.
|
||||||
|
level_weights = tf.math.divide(
|
||||||
|
1., 2. - tf.math.pow(.5, tf.cast(state.level_buffer_idx, tf.float32)))
|
||||||
|
|
||||||
|
def _weighted_sum(buffer):
|
||||||
|
expand_shape = [len(level_weights)] + [1] * (len(tf.shape(buffer)) - 1)
|
||||||
|
weighted_buffer = tf.math.multiply(
|
||||||
|
buffer, tf.reshape(level_weights, expand_shape))
|
||||||
|
return tf.reduce_sum(weighted_buffer, axis=0)
|
||||||
|
|
||||||
|
return tf.nest.map_structure(_weighted_sum, state.level_buffer)
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def get_cumsum_and_update(self,
|
||||||
|
state: TreeState) -> Tuple[tf.Tensor, TreeState]:
|
||||||
|
"""Returns tree aggregated value and updated `TreeState` for one step.
|
||||||
|
|
||||||
|
`TreeState` is updated to prepare for accepting the *next* leaf node. Note
|
||||||
|
that `get_step_idx` can be called to get the current index of the leaf node
|
||||||
|
before calling this function. This function accept state for the current
|
||||||
|
leaf node and prepare for the next leaf node because TFF prefers to know
|
||||||
|
the types of state at initialization. Note that the value of new node in
|
||||||
|
`TreeState.level_buffer` will depend on its two children, and is updated
|
||||||
|
from bottom up for the right child.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state: `TreeState` for the current leaf node, index can be queried by
|
||||||
|
`tree_aggregation.get_step_idx(state.level_buffer_idx)`.
|
||||||
|
"""
|
||||||
|
cumsum = self._get_cumsum(state)
|
||||||
|
|
||||||
|
level_buffer_idx, level_buffer, value_generator_state = (
|
||||||
|
state.level_buffer_idx, state.level_buffer, state.value_generator_state)
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda x: tf.TensorArray( # pylint: disable=g-long-lambda
|
||||||
|
dtype=tf.float32,
|
||||||
|
size=0,
|
||||||
|
dynamic_size=True),
|
||||||
|
level_buffer)
|
||||||
|
new_level_buffer_idx = tf.TensorArray(
|
||||||
|
dtype=tf.int32, size=0, dynamic_size=True)
|
||||||
|
# `TreeState` stores the left child node necessary for computing the cumsum
|
||||||
|
# noise. To update the buffer, let us find the lowest level that will switch
|
||||||
|
# from a right child (not in the buffer) to a left child.
|
||||||
|
level_idx = 0 # new leaf node starts from level 0
|
||||||
|
new_value, value_generator_state = self.value_generator.next(
|
||||||
|
value_generator_state)
|
||||||
|
while tf.less(level_idx, len(level_buffer_idx)) and tf.equal(
|
||||||
|
level_idx, level_buffer_idx[level_idx]):
|
||||||
|
# Recursively update if the current node is a right child.
|
||||||
|
node_value, value_generator_state = self.value_generator.next(
|
||||||
|
value_generator_state)
|
||||||
|
new_value = tf.nest.map_structure(
|
||||||
|
lambda l, r, n: 0.5 * (l[level_idx] + r) + n, level_buffer, new_value,
|
||||||
|
node_value)
|
||||||
|
level_idx += 1
|
||||||
|
# A new (left) node will be created at `level_idx`.
|
||||||
|
write_buffer_idx = 0
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.write(write_buffer_idx,
|
||||||
|
level_idx)
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda x, y: x.write(write_buffer_idx, y), new_level_buffer, new_value)
|
||||||
|
write_buffer_idx += 1
|
||||||
|
# Buffer index will now different from level index for the old `TreeState`
|
||||||
|
# i.e., `level_buffer_idx[level_idx] != level_idx`. Rename parameter to
|
||||||
|
# buffer index for clarity.
|
||||||
|
buffer_idx = level_idx
|
||||||
|
while tf.less(buffer_idx, len(level_buffer_idx)):
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.write(
|
||||||
|
write_buffer_idx, level_buffer_idx[buffer_idx])
|
||||||
|
new_level_buffer = tf.nest.map_structure(
|
||||||
|
lambda nb, b: nb.write(write_buffer_idx, b[buffer_idx]),
|
||||||
|
new_level_buffer, level_buffer)
|
||||||
|
buffer_idx += 1
|
||||||
|
write_buffer_idx += 1
|
||||||
|
new_level_buffer_idx = new_level_buffer_idx.stack()
|
||||||
|
new_level_buffer = tf.nest.map_structure(lambda x: x.stack(),
|
||||||
|
new_level_buffer)
|
||||||
|
new_state = TreeState(
|
||||||
|
level_buffer=new_level_buffer,
|
||||||
|
level_buffer_idx=new_level_buffer_idx,
|
||||||
|
value_generator_state=value_generator_state)
|
||||||
|
return cumsum, new_state
|
355
tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py
Normal file
355
tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py
Normal file
|
@ -0,0 +1,355 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""DPQuery for continual observation queries relying on `tree_aggregation`."""
|
||||||
|
|
||||||
|
import attr
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||||
|
from tensorflow_privacy.privacy.dp_query import tree_aggregation
|
||||||
|
|
||||||
|
|
||||||
|
class TreeCumulativeSumQuery(dp_query.SumAggregationDPQuery):
|
||||||
|
"""Implements dp_query for adding correlated noise through tree structure.
|
||||||
|
|
||||||
|
First clips and sums records in current sample, returns cumulative sum of
|
||||||
|
samples over time (instead of only current sample) with added noise for
|
||||||
|
cumulative sum proportional to log(T), T being the number of times the query
|
||||||
|
is called.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
clip_fn: Callable that specifies clipping function. `clip_fn` receives two
|
||||||
|
arguments: a flat list of vars in a record and a `clip_value` to clip the
|
||||||
|
corresponding record, e.g. clip_fn(flat_record, clip_value).
|
||||||
|
clip_value: float indicating the value at which to clip the record.
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
tree_aggregator: `tree_aggregation.TreeAggregator` initialized with
|
||||||
|
user defined `noise_generator`. `noise_generator` is a
|
||||||
|
`tree_aggregation.ValueGenerator` to generate the noise value for a tree
|
||||||
|
node. Noise stdandard deviation is specified outside the `dp_query` by the
|
||||||
|
user when defining `noise_fn` and should have order
|
||||||
|
O(clip_norm*log(T)/eps) to guarantee eps-DP.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@attr.s(frozen=True)
|
||||||
|
class GlobalState(object):
|
||||||
|
"""Class defining global state for Tree sum queries.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
tree_state: Current state of noise tree keeping track of current leaf and
|
||||||
|
each level state.
|
||||||
|
clip_value: The clipping value to be passed to clip_fn.
|
||||||
|
samples_cumulative_sum: Noiseless cumulative sum of samples over time.
|
||||||
|
"""
|
||||||
|
tree_state = attr.ib()
|
||||||
|
clip_value = attr.ib()
|
||||||
|
samples_cumulative_sum = attr.ib()
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
record_specs,
|
||||||
|
noise_generator,
|
||||||
|
clip_fn,
|
||||||
|
clip_value,
|
||||||
|
use_efficient=True):
|
||||||
|
"""Initializes the `TreeCumulativeSumQuery`.
|
||||||
|
|
||||||
|
Consider using `build_l2_gaussian_query` for the construction of a
|
||||||
|
`TreeCumulativeSumQuery` with L2 norm clipping and Gaussian noise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
noise_generator: `tree_aggregation.ValueGenerator` to generate the noise
|
||||||
|
value for a tree node. Should be coupled with clipping norm to guarantee
|
||||||
|
privacy.
|
||||||
|
clip_fn: Callable that specifies clipping function. Input to clip is a
|
||||||
|
flat list of vars in a record.
|
||||||
|
clip_value: Float indicating the value at which to clip the record.
|
||||||
|
use_efficient: Boolean indicating the usage of the efficient tree
|
||||||
|
aggregation algorithm based on the paper "Efficient Use of
|
||||||
|
Differentially Private Binary Trees".
|
||||||
|
"""
|
||||||
|
self._clip_fn = clip_fn
|
||||||
|
self._clip_value = clip_value
|
||||||
|
self._record_specs = record_specs
|
||||||
|
if use_efficient:
|
||||||
|
self._tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
noise_generator)
|
||||||
|
else:
|
||||||
|
self._tree_aggregator = tree_aggregation.TreeAggregator(noise_generator)
|
||||||
|
|
||||||
|
def initial_global_state(self):
|
||||||
|
"""Returns initial global state."""
|
||||||
|
initial_tree_state = self._tree_aggregator.init_state()
|
||||||
|
initial_samples_cumulative_sum = tf.nest.map_structure(
|
||||||
|
lambda spec: tf.zeros(spec.shape), self._record_specs)
|
||||||
|
initial_state = TreeCumulativeSumQuery.GlobalState(
|
||||||
|
tree_state=initial_tree_state,
|
||||||
|
clip_value=tf.constant(self._clip_value, tf.float32),
|
||||||
|
samples_cumulative_sum=initial_samples_cumulative_sum)
|
||||||
|
return initial_state
|
||||||
|
|
||||||
|
def derive_sample_params(self, global_state):
|
||||||
|
return global_state.clip_value
|
||||||
|
|
||||||
|
def preprocess_record(self, params, record):
|
||||||
|
"""Returns the clipped record using `clip_fn` and params.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params: `clip_value` for the record.
|
||||||
|
record: The record to be processed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Structure of clipped tensors.
|
||||||
|
"""
|
||||||
|
clip_value = params
|
||||||
|
record_as_list = tf.nest.flatten(record)
|
||||||
|
clipped_as_list = self._clip_fn(record_as_list, clip_value)
|
||||||
|
return tf.nest.pack_sequence_as(record, clipped_as_list)
|
||||||
|
|
||||||
|
def get_noised_result(self, sample_state, global_state):
|
||||||
|
"""Updates tree, state, and returns noised cumulative sum and updated state.
|
||||||
|
|
||||||
|
Computes new cumulative sum, and returns its noised value. Grows tree_state
|
||||||
|
by one new leaf, and returns the new state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: Sum of clipped records for this round.
|
||||||
|
global_state: Global state with current samples cumulative sum and tree
|
||||||
|
state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple of (noised_cumulative_sum, new_global_state).
|
||||||
|
"""
|
||||||
|
new_cumulative_sum = tf.nest.map_structure(
|
||||||
|
tf.add, global_state.samples_cumulative_sum, sample_state)
|
||||||
|
cumulative_sum_noise, new_tree_state = self._tree_aggregator.get_cumsum_and_update(
|
||||||
|
global_state.tree_state)
|
||||||
|
new_global_state = attr.evolve(
|
||||||
|
global_state,
|
||||||
|
samples_cumulative_sum=new_cumulative_sum,
|
||||||
|
tree_state=new_tree_state)
|
||||||
|
noised_cum_sum = tf.nest.map_structure(tf.add, new_cumulative_sum,
|
||||||
|
cumulative_sum_noise)
|
||||||
|
return noised_cum_sum, new_global_state
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def build_l2_gaussian_query(cls,
|
||||||
|
clip_norm,
|
||||||
|
noise_multiplier,
|
||||||
|
record_specs,
|
||||||
|
noise_seed=None,
|
||||||
|
use_efficient=True):
|
||||||
|
"""Returns a query instance with L2 norm clipping and Gaussian noise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
clip_norm: Each record will be clipped so that it has L2 norm at most
|
||||||
|
`clip_norm`.
|
||||||
|
noise_multiplier: The effective noise multiplier for the sum of records.
|
||||||
|
Noise standard deviation is `clip_norm*noise_multiplier`.
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
noise_seed: Integer seed for the Gaussian noise generator. If `None`, a
|
||||||
|
nondeterministic seed based on system time will be generated.
|
||||||
|
use_efficient: Boolean indicating the usage of the efficient tree
|
||||||
|
aggregation algorithm based on the paper "Efficient Use of
|
||||||
|
Differentially Private Binary Trees".
|
||||||
|
"""
|
||||||
|
if clip_norm <= 0:
|
||||||
|
raise ValueError(f'`clip_norm` must be positive, got {clip_norm}.')
|
||||||
|
|
||||||
|
if noise_multiplier < 0:
|
||||||
|
raise ValueError(
|
||||||
|
f'`noise_multiplier` must be non-negative, got {noise_multiplier}.')
|
||||||
|
|
||||||
|
gaussian_noise_generator = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=clip_norm * noise_multiplier,
|
||||||
|
specs=record_specs,
|
||||||
|
seed=noise_seed)
|
||||||
|
|
||||||
|
def l2_clip_fn(record_as_list, clip_norm):
|
||||||
|
clipped_record, _ = tf.clip_by_global_norm(record_as_list, clip_norm)
|
||||||
|
return clipped_record
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
clip_fn=l2_clip_fn,
|
||||||
|
clip_value=clip_norm,
|
||||||
|
record_specs=record_specs,
|
||||||
|
noise_generator=gaussian_noise_generator,
|
||||||
|
use_efficient=use_efficient)
|
||||||
|
|
||||||
|
|
||||||
|
class TreeResidualSumQuery(dp_query.SumAggregationDPQuery):
|
||||||
|
"""Implements dp_query for adding correlated noise through tree structure.
|
||||||
|
|
||||||
|
Clips and sums records in current sample; returns the current sample adding
|
||||||
|
the noise residual from tree aggregation. The returned value is conceptually
|
||||||
|
equivalent to the following: calculates cumulative sum of samples over time
|
||||||
|
(instead of only current sample) with added noise for cumulative sum
|
||||||
|
proportional to log(T), T being the number of times the query is called;
|
||||||
|
returns the residual between the current noised cumsum and the previous one
|
||||||
|
when the query is called. Combining this query with a SGD optimizer can be
|
||||||
|
used to implement the DP-FTRL algorithm in
|
||||||
|
"Practical and Private (Deep) Learning without Sampling or Shuffling".
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
clip_fn: Callable that specifies clipping function. `clip_fn` receives two
|
||||||
|
arguments: a flat list of vars in a record and a `clip_value` to clip the
|
||||||
|
corresponding record, e.g. clip_fn(flat_record, clip_value).
|
||||||
|
clip_value: float indicating the value at which to clip the record.
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
tree_aggregator: `tree_aggregation.TreeAggregator` initialized with user
|
||||||
|
defined `noise_generator`. `noise_generator` is a
|
||||||
|
`tree_aggregation.ValueGenerator` to generate the noise value for a tree
|
||||||
|
node. Noise stdandard deviation is specified outside the `dp_query` by the
|
||||||
|
user when defining `noise_fn` and should have order
|
||||||
|
O(clip_norm*log(T)/eps) to guarantee eps-DP.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@attr.s(frozen=True)
|
||||||
|
class GlobalState(object):
|
||||||
|
"""Class defining global state for Tree sum queries.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
tree_state: Current state of noise tree keeping track of current leaf and
|
||||||
|
each level state.
|
||||||
|
clip_value: The clipping value to be passed to clip_fn.
|
||||||
|
previous_tree_noise: Cumulative noise by tree aggregation from the
|
||||||
|
previous time the query is called on a sample.
|
||||||
|
"""
|
||||||
|
tree_state = attr.ib()
|
||||||
|
clip_value = attr.ib()
|
||||||
|
previous_tree_noise = attr.ib()
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
record_specs,
|
||||||
|
noise_generator,
|
||||||
|
clip_fn,
|
||||||
|
clip_value,
|
||||||
|
use_efficient=True):
|
||||||
|
"""Initializes the `TreeResidualSumQuery`.
|
||||||
|
|
||||||
|
Consider using `build_l2_gaussian_query` for the construction of a
|
||||||
|
`TreeResidualSumQuery` with L2 norm clipping and Gaussian noise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
noise_generator: `tree_aggregation.ValueGenerator` to generate the noise
|
||||||
|
value for a tree node. Should be coupled with clipping norm to guarantee
|
||||||
|
privacy.
|
||||||
|
clip_fn: Callable that specifies clipping function. Input to clip is a
|
||||||
|
flat list of vars in a record.
|
||||||
|
clip_value: Float indicating the value at which to clip the record.
|
||||||
|
use_efficient: Boolean indicating the usage of the efficient tree
|
||||||
|
aggregation algorithm based on the paper "Efficient Use of
|
||||||
|
Differentially Private Binary Trees".
|
||||||
|
"""
|
||||||
|
self._clip_fn = clip_fn
|
||||||
|
self._clip_value = clip_value
|
||||||
|
self._record_specs = record_specs
|
||||||
|
if use_efficient:
|
||||||
|
self._tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
noise_generator)
|
||||||
|
else:
|
||||||
|
self._tree_aggregator = tree_aggregation.TreeAggregator(noise_generator)
|
||||||
|
|
||||||
|
def initial_global_state(self):
|
||||||
|
"""Returns initial global state."""
|
||||||
|
initial_tree_state = self._tree_aggregator.init_state()
|
||||||
|
initial_noise = tf.nest.map_structure(lambda spec: tf.zeros(spec.shape),
|
||||||
|
self._record_specs)
|
||||||
|
return TreeResidualSumQuery.GlobalState(
|
||||||
|
tree_state=initial_tree_state,
|
||||||
|
clip_value=tf.constant(self._clip_value, tf.float32),
|
||||||
|
previous_tree_noise=initial_noise)
|
||||||
|
|
||||||
|
def derive_sample_params(self, global_state):
|
||||||
|
return global_state.clip_value
|
||||||
|
|
||||||
|
def preprocess_record(self, params, record):
|
||||||
|
"""Returns the clipped record using `clip_fn` and params.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params: `clip_value` for the record.
|
||||||
|
record: The record to be processed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Structure of clipped tensors.
|
||||||
|
"""
|
||||||
|
clip_value = params
|
||||||
|
record_as_list = tf.nest.flatten(record)
|
||||||
|
clipped_as_list = self._clip_fn(record_as_list, clip_value)
|
||||||
|
return tf.nest.pack_sequence_as(record, clipped_as_list)
|
||||||
|
|
||||||
|
def get_noised_result(self, sample_state, global_state):
|
||||||
|
"""Updates tree state, and returns residual of noised cumulative sum.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: Sum of clipped records for this round.
|
||||||
|
global_state: Global state with current samples cumulative sum and tree
|
||||||
|
state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple of (noised_cumulative_sum, new_global_state).
|
||||||
|
"""
|
||||||
|
tree_noise, new_tree_state = self._tree_aggregator.get_cumsum_and_update(
|
||||||
|
global_state.tree_state)
|
||||||
|
noised_sample = tf.nest.map_structure(lambda a, b, c: a + b - c,
|
||||||
|
sample_state, tree_noise,
|
||||||
|
global_state.previous_tree_noise)
|
||||||
|
new_global_state = attr.evolve(
|
||||||
|
global_state, previous_tree_noise=tree_noise, tree_state=new_tree_state)
|
||||||
|
return noised_sample, new_global_state
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def build_l2_gaussian_query(cls,
|
||||||
|
clip_norm,
|
||||||
|
noise_multiplier,
|
||||||
|
record_specs,
|
||||||
|
noise_seed=None,
|
||||||
|
use_efficient=True):
|
||||||
|
"""Returns `TreeResidualSumQuery` with L2 norm clipping and Gaussian noise.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
clip_norm: Each record will be clipped so that it has L2 norm at most
|
||||||
|
`clip_norm`.
|
||||||
|
noise_multiplier: The effective noise multiplier for the sum of records.
|
||||||
|
Noise standard deviation is `clip_norm*noise_multiplier`.
|
||||||
|
record_specs: `Collection[tf.TensorSpec]` specifying shapes of records.
|
||||||
|
noise_seed: Integer seed for the Gaussian noise generator. If `None`, a
|
||||||
|
nondeterministic seed based on system time will be generated.
|
||||||
|
use_efficient: Boolean indicating the usage of the efficient tree
|
||||||
|
aggregation algorithm based on the paper "Efficient Use of
|
||||||
|
Differentially Private Binary Trees".
|
||||||
|
"""
|
||||||
|
if clip_norm <= 0:
|
||||||
|
raise ValueError(f'`clip_norm` must be positive, got {clip_norm}.')
|
||||||
|
|
||||||
|
if noise_multiplier < 0:
|
||||||
|
raise ValueError(
|
||||||
|
f'`noise_multiplier` must be non-negative, got {noise_multiplier}.')
|
||||||
|
|
||||||
|
gaussian_noise_generator = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=clip_norm * noise_multiplier,
|
||||||
|
specs=record_specs,
|
||||||
|
seed=noise_seed)
|
||||||
|
|
||||||
|
def l2_clip_fn(record_as_list, clip_norm):
|
||||||
|
clipped_record, _ = tf.clip_by_global_norm(record_as_list, clip_norm)
|
||||||
|
return clipped_record
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
clip_fn=l2_clip_fn,
|
||||||
|
clip_value=clip_norm,
|
||||||
|
record_specs=record_specs,
|
||||||
|
noise_generator=gaussian_noise_generator,
|
||||||
|
use_efficient=use_efficient)
|
|
@ -0,0 +1,399 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Tests for `tree_aggregation_query`."""
|
||||||
|
|
||||||
|
from absl.testing import parameterized
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||||
|
from tensorflow_privacy.privacy.dp_query import tree_aggregation
|
||||||
|
from tensorflow_privacy.privacy.dp_query import tree_aggregation_query
|
||||||
|
|
||||||
|
|
||||||
|
STRUCT_RECORD = [
|
||||||
|
tf.constant([[2.0, 0.0], [0.0, 1.0]]),
|
||||||
|
tf.constant([-1.0, 0.0])
|
||||||
|
]
|
||||||
|
|
||||||
|
SINGLE_VALUE_RECORDS = [tf.constant(1.), tf.constant(3.), tf.constant(5.)]
|
||||||
|
|
||||||
|
STRUCTURE_SPECS = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
STRUCT_RECORD)
|
||||||
|
NOISE_STD = 5.0
|
||||||
|
|
||||||
|
STREAMING_SCALARS = np.array(range(7), dtype=np.single)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_noise_generator(specs, stddev=NOISE_STD, seed=1):
|
||||||
|
return tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=stddev, specs=specs, seed=seed)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_noise_fn(specs, stddev=NOISE_STD, seed=1):
|
||||||
|
random_generator = tf.random.Generator.from_seed(seed)
|
||||||
|
|
||||||
|
def noise_fn():
|
||||||
|
shape = tf.nest.map_structure(lambda spec: spec.shape, specs)
|
||||||
|
return tf.nest.map_structure(
|
||||||
|
lambda x: random_generator.normal(x, stddev=stddev), shape)
|
||||||
|
|
||||||
|
return noise_fn
|
||||||
|
|
||||||
|
|
||||||
|
def _get_no_noise_fn(specs):
|
||||||
|
shape = tf.nest.map_structure(lambda spec: spec.shape, specs)
|
||||||
|
def no_noise_fn():
|
||||||
|
return tf.nest.map_structure(tf.zeros, shape)
|
||||||
|
|
||||||
|
return no_noise_fn
|
||||||
|
|
||||||
|
|
||||||
|
def _get_l2_clip_fn():
|
||||||
|
|
||||||
|
def l2_clip_fn(record_as_list, clip_value):
|
||||||
|
clipped_record, _ = tf.clip_by_global_norm(record_as_list, clip_value)
|
||||||
|
return clipped_record
|
||||||
|
|
||||||
|
return l2_clip_fn
|
||||||
|
|
||||||
|
|
||||||
|
def _get_l_infty_clip_fn():
|
||||||
|
|
||||||
|
def l_infty_clip_fn(record_as_list, clip_value):
|
||||||
|
def clip(record):
|
||||||
|
return tf.clip_by_value(
|
||||||
|
record, clip_value_min=-clip_value, clip_value_max=clip_value)
|
||||||
|
|
||||||
|
clipped_record = tf.nest.map_structure(clip, record_as_list)
|
||||||
|
return clipped_record
|
||||||
|
|
||||||
|
return l_infty_clip_fn
|
||||||
|
|
||||||
|
|
||||||
|
class TreeCumulativeSumQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
def test_correct_initial_global_state_struct_type(self):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=10.,
|
||||||
|
noise_generator=_get_no_noise_fn(STRUCTURE_SPECS),
|
||||||
|
record_specs=STRUCTURE_SPECS)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
|
||||||
|
self.assertIsInstance(global_state.tree_state, tree_aggregation.TreeState)
|
||||||
|
expected_cum_sum = tf.nest.map_structure(lambda spec: tf.zeros(spec.shape),
|
||||||
|
STRUCTURE_SPECS)
|
||||||
|
self.assertAllClose(expected_cum_sum, global_state.samples_cumulative_sum)
|
||||||
|
|
||||||
|
def test_correct_initial_global_state_single_value_type(self):
|
||||||
|
record_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
SINGLE_VALUE_RECORDS[0])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=10.,
|
||||||
|
noise_generator=_get_no_noise_fn(record_specs),
|
||||||
|
record_specs=record_specs)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
|
||||||
|
self.assertIsInstance(global_state.tree_state, tree_aggregation.TreeState)
|
||||||
|
expected_cum_sum = tf.nest.map_structure(lambda spec: tf.zeros(spec.shape),
|
||||||
|
record_specs)
|
||||||
|
self.assertAllClose(expected_cum_sum, global_state.samples_cumulative_sum)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('not_clip_single_record', SINGLE_VALUE_RECORDS[0], 10.0),
|
||||||
|
('clip_single_record', SINGLE_VALUE_RECORDS[1], 1.0))
|
||||||
|
def test_l2_clips_single_record(self, record, l2_norm_clip):
|
||||||
|
record_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
SINGLE_VALUE_RECORDS[0])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=l2_norm_clip,
|
||||||
|
noise_generator=_get_no_noise_fn(record_specs),
|
||||||
|
record_specs=record_specs)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
record_norm = tf.norm(record)
|
||||||
|
if record_norm > l2_norm_clip:
|
||||||
|
expected_clipped_record = tf.nest.map_structure(
|
||||||
|
lambda t: t * l2_norm_clip / record_norm, record)
|
||||||
|
else:
|
||||||
|
expected_clipped_record = record
|
||||||
|
clipped_record = query.preprocess_record(global_state.clip_value, record)
|
||||||
|
self.assertAllClose(expected_clipped_record, clipped_record)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('not_clip_structure_record', STRUCT_RECORD, 10.0),
|
||||||
|
('clip_structure_record', STRUCT_RECORD, 1.0))
|
||||||
|
def test_l2_clips_structure_type_record(self, record, l2_norm_clip):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=l2_norm_clip,
|
||||||
|
noise_generator=_get_no_noise_fn(STRUCTURE_SPECS),
|
||||||
|
record_specs=tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
record))
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
record_norm = tf.linalg.global_norm(record)
|
||||||
|
if record_norm > l2_norm_clip:
|
||||||
|
expected_clipped_record = tf.nest.map_structure(
|
||||||
|
lambda t: t * l2_norm_clip / record_norm, record)
|
||||||
|
else:
|
||||||
|
expected_clipped_record = record
|
||||||
|
clipped_record = query.preprocess_record(global_state.clip_value, record)
|
||||||
|
self.assertAllClose(expected_clipped_record, clipped_record)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('not_clip_single_record', SINGLE_VALUE_RECORDS[0], 10.0),
|
||||||
|
('clip_single_record', SINGLE_VALUE_RECORDS[1], 1.0))
|
||||||
|
def test_l_infty_clips_single_record(self, record, norm_clip):
|
||||||
|
record_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
SINGLE_VALUE_RECORDS[0])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l_infty_clip_fn(),
|
||||||
|
clip_value=norm_clip,
|
||||||
|
noise_generator=_get_no_noise_fn(record_specs),
|
||||||
|
record_specs=record_specs)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
expected_clipped_record = tf.nest.map_structure(
|
||||||
|
lambda t: tf.clip_by_value(t, -norm_clip, norm_clip), record)
|
||||||
|
clipped_record = query.preprocess_record(global_state.clip_value, record)
|
||||||
|
self.assertAllClose(expected_clipped_record, clipped_record)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('not_clip_structure_record', STRUCT_RECORD, 10.0),
|
||||||
|
('clip_structure_record', STRUCT_RECORD, 1.0))
|
||||||
|
def test_linfty_clips_structure_type_record(self, record, norm_clip):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l_infty_clip_fn(),
|
||||||
|
clip_value=norm_clip,
|
||||||
|
noise_generator=_get_no_noise_fn(STRUCTURE_SPECS),
|
||||||
|
record_specs=tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
record))
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
expected_clipped_record = tf.nest.map_structure(
|
||||||
|
lambda t: tf.clip_by_value(t, -norm_clip, norm_clip), record)
|
||||||
|
clipped_record = query.preprocess_record(global_state.clip_value, record)
|
||||||
|
self.assertAllClose(expected_clipped_record, clipped_record)
|
||||||
|
|
||||||
|
def test_noiseless_query_single_value_type_record(self):
|
||||||
|
record_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
SINGLE_VALUE_RECORDS[0])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=10.,
|
||||||
|
noise_generator=_get_no_noise_fn(record_specs),
|
||||||
|
record_specs=record_specs)
|
||||||
|
query_result, _ = test_utils.run_query(query, SINGLE_VALUE_RECORDS)
|
||||||
|
expected = tf.constant(9.)
|
||||||
|
self.assertAllClose(query_result, expected)
|
||||||
|
|
||||||
|
def test_noiseless_query_structure_type_record(self):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=10.,
|
||||||
|
noise_generator=_get_no_noise_fn(STRUCTURE_SPECS),
|
||||||
|
record_specs=STRUCTURE_SPECS)
|
||||||
|
query_result, _ = test_utils.run_query(query,
|
||||||
|
[STRUCT_RECORD, STRUCT_RECORD])
|
||||||
|
expected = tf.nest.map_structure(lambda a, b: a + b, STRUCT_RECORD,
|
||||||
|
STRUCT_RECORD)
|
||||||
|
self.assertAllClose(query_result, expected)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('two_records_noise_fn', [2.71828, 3.14159], _get_noise_fn),
|
||||||
|
('five_records_noise_fn', np.random.uniform(size=5).tolist(),
|
||||||
|
_get_noise_fn),
|
||||||
|
('two_records_generator', [2.71828, 3.14159], _get_noise_generator),
|
||||||
|
('five_records_generator', np.random.uniform(size=5).tolist(),
|
||||||
|
_get_noise_generator),
|
||||||
|
)
|
||||||
|
def test_noisy_cumsum_and_state_update(self, records, value_generator):
|
||||||
|
num_trials = 200
|
||||||
|
record_specs = tf.nest.map_structure(lambda t: tf.TensorSpec(tf.shape(t)),
|
||||||
|
records[0])
|
||||||
|
noised_sums = []
|
||||||
|
for i in range(num_trials):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=10.,
|
||||||
|
noise_generator=value_generator(record_specs, seed=i),
|
||||||
|
record_specs=record_specs)
|
||||||
|
query_result, _ = test_utils.run_query(query, records)
|
||||||
|
noised_sums.append(query_result)
|
||||||
|
result_stddev = np.std(noised_sums)
|
||||||
|
self.assertNear(result_stddev, NOISE_STD, 0.7) # value for chi-squared test
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('no_clip', STREAMING_SCALARS, 10., np.cumsum(STREAMING_SCALARS)),
|
||||||
|
('all_clip', STREAMING_SCALARS, 0.5, STREAMING_SCALARS * 0.5),
|
||||||
|
# STREAMING_SCALARS is list(range(7)), only the last element is clipped
|
||||||
|
# for the following test, which makes the expected value for the last sum
|
||||||
|
# to be `cumsum(5)+5`.
|
||||||
|
('partial_clip', STREAMING_SCALARS, 5.,
|
||||||
|
np.append(np.cumsum(STREAMING_SCALARS[:-1]), 20.)),
|
||||||
|
)
|
||||||
|
def test_partial_sum_scalar_no_noise(self, streaming_scalars, clip_norm,
|
||||||
|
partial_sum):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=clip_norm,
|
||||||
|
noise_generator=lambda: 0.,
|
||||||
|
record_specs=tf.TensorSpec([]),
|
||||||
|
)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
params = query.derive_sample_params(global_state)
|
||||||
|
for scalar, expected_sum in zip(streaming_scalars, partial_sum):
|
||||||
|
sample_state = query.initial_sample_state(scalar)
|
||||||
|
sample_state = query.accumulate_record(params, sample_state, scalar)
|
||||||
|
query_result, global_state = query.get_noised_result(
|
||||||
|
sample_state, global_state)
|
||||||
|
self.assertEqual(query_result, expected_sum)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('s0t1step8', 0., 1., [1., 1., 2., 1., 2., 2., 3., 1.]),
|
||||||
|
('s1t1step8', 1., 1., [2., 3., 5., 5., 7., 8., 10., 9.]),
|
||||||
|
('s1t2step8', 1., 2., [3., 4., 7., 6., 9., 10., 13., 10.]),
|
||||||
|
)
|
||||||
|
def test_partial_sum_scalar_tree_aggregation(self, scalar_value,
|
||||||
|
tree_node_value,
|
||||||
|
expected_values):
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=scalar_value + 1., # no clip
|
||||||
|
noise_generator=lambda: tree_node_value,
|
||||||
|
record_specs=tf.TensorSpec([]),
|
||||||
|
use_efficient=False,
|
||||||
|
)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
params = query.derive_sample_params(global_state)
|
||||||
|
for val in expected_values:
|
||||||
|
# For each streaming step i , the expected value is roughly
|
||||||
|
# `scalar_value*i + tree_aggregation(tree_node_value, i)`
|
||||||
|
sample_state = query.initial_sample_state(scalar_value)
|
||||||
|
sample_state = query.accumulate_record(params, sample_state, scalar_value)
|
||||||
|
query_result, global_state = query.get_noised_result(
|
||||||
|
sample_state, global_state)
|
||||||
|
self.assertEqual(query_result, val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('efficient', True, tree_aggregation.EfficientTreeAggregator),
|
||||||
|
('normal', False, tree_aggregation.TreeAggregator),
|
||||||
|
)
|
||||||
|
def test_sum_tree_aggregator_instance(self, use_efficient, tree_class):
|
||||||
|
specs = tf.TensorSpec([])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=1.,
|
||||||
|
noise_generator=_get_noise_fn(specs, 1.),
|
||||||
|
record_specs=specs,
|
||||||
|
use_efficient=use_efficient,
|
||||||
|
)
|
||||||
|
self.assertIsInstance(query._tree_aggregator, tree_class)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('r5d10n0s1s16eff', 5, 10, 0., 1, 16, 0.1, True),
|
||||||
|
('r3d5n1s1s32eff', 3, 5, 1., 1, 32, 1., True),
|
||||||
|
('r10d3n1s2s16eff', 10, 3, 1., 2, 16, 10., True),
|
||||||
|
('r10d3n1s2s16', 10, 3, 1., 2, 16, 10., False),
|
||||||
|
)
|
||||||
|
def test_build_l2_gaussian_query(self, records_num, record_dim,
|
||||||
|
noise_multiplier, seed, total_steps, clip,
|
||||||
|
use_efficient):
|
||||||
|
record_specs = tf.TensorSpec(shape=[record_dim])
|
||||||
|
query = tree_aggregation_query.TreeCumulativeSumQuery.build_l2_gaussian_query(
|
||||||
|
clip_norm=clip,
|
||||||
|
noise_multiplier=noise_multiplier,
|
||||||
|
record_specs=record_specs,
|
||||||
|
noise_seed=seed,
|
||||||
|
use_efficient=use_efficient)
|
||||||
|
reference_query = tree_aggregation_query.TreeCumulativeSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=clip,
|
||||||
|
noise_generator=_get_noise_generator(record_specs,
|
||||||
|
clip * noise_multiplier, seed),
|
||||||
|
record_specs=record_specs,
|
||||||
|
use_efficient=use_efficient)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
reference_global_state = reference_query.initial_global_state()
|
||||||
|
|
||||||
|
for _ in range(total_steps):
|
||||||
|
records = [
|
||||||
|
tf.random.uniform(shape=[record_dim], maxval=records_num)
|
||||||
|
for _ in range(records_num)
|
||||||
|
]
|
||||||
|
query_result, global_state = test_utils.run_query(query, records,
|
||||||
|
global_state)
|
||||||
|
reference_query_result, reference_global_state = test_utils.run_query(
|
||||||
|
reference_query, records, reference_global_state)
|
||||||
|
self.assertAllClose(query_result, reference_query_result, rtol=1e-6)
|
||||||
|
|
||||||
|
|
||||||
|
class TreeResidualQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('r5d10n0s1s16eff', 5, 10, 0., 1, 16, 0.1, True),
|
||||||
|
('r3d5n1s1s32eff', 3, 5, 1., 1, 32, 1., True),
|
||||||
|
('r10d3n1s2s16eff', 10, 3, 1., 2, 16, 10., True),
|
||||||
|
('r10d3n1s2s16', 10, 3, 1., 2, 16, 10., False),
|
||||||
|
)
|
||||||
|
def test_sum(self, records_num, record_dim, noise_multiplier, seed,
|
||||||
|
total_steps, clip, use_efficient):
|
||||||
|
record_specs = tf.TensorSpec(shape=[record_dim])
|
||||||
|
query = tree_aggregation_query.TreeResidualSumQuery.build_l2_gaussian_query(
|
||||||
|
clip_norm=clip,
|
||||||
|
noise_multiplier=noise_multiplier,
|
||||||
|
record_specs=record_specs,
|
||||||
|
noise_seed=seed,
|
||||||
|
use_efficient=use_efficient)
|
||||||
|
sum_query = tree_aggregation_query.TreeCumulativeSumQuery.build_l2_gaussian_query(
|
||||||
|
clip_norm=clip,
|
||||||
|
noise_multiplier=noise_multiplier,
|
||||||
|
record_specs=record_specs,
|
||||||
|
noise_seed=seed,
|
||||||
|
use_efficient=use_efficient)
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
sum_global_state = sum_query.initial_global_state()
|
||||||
|
|
||||||
|
cumsum_result = tf.zeros(shape=[record_dim])
|
||||||
|
for _ in range(total_steps):
|
||||||
|
records = [
|
||||||
|
tf.random.uniform(shape=[record_dim], maxval=records_num)
|
||||||
|
for _ in range(records_num)
|
||||||
|
]
|
||||||
|
query_result, global_state = test_utils.run_query(query, records,
|
||||||
|
global_state)
|
||||||
|
sum_query_result, sum_global_state = test_utils.run_query(
|
||||||
|
sum_query, records, sum_global_state)
|
||||||
|
cumsum_result += query_result
|
||||||
|
self.assertAllClose(cumsum_result, sum_query_result, rtol=1e-6)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('efficient', True, tree_aggregation.EfficientTreeAggregator),
|
||||||
|
('normal', False, tree_aggregation.TreeAggregator),
|
||||||
|
)
|
||||||
|
def test_sum_tree_aggregator_instance(self, use_efficient, tree_class):
|
||||||
|
specs = tf.TensorSpec([])
|
||||||
|
query = tree_aggregation_query.TreeResidualSumQuery(
|
||||||
|
clip_fn=_get_l2_clip_fn(),
|
||||||
|
clip_value=1.,
|
||||||
|
noise_generator=_get_noise_fn(specs, 1.),
|
||||||
|
record_specs=specs,
|
||||||
|
use_efficient=use_efficient,
|
||||||
|
)
|
||||||
|
self.assertIsInstance(query._tree_aggregator, tree_class)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
369
tensorflow_privacy/privacy/dp_query/tree_aggregation_test.py
Normal file
369
tensorflow_privacy/privacy/dp_query/tree_aggregation_test.py
Normal file
|
@ -0,0 +1,369 @@
|
||||||
|
# Copyright 2021, Google LLC.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Tests for `tree_aggregation`."""
|
||||||
|
import math
|
||||||
|
from absl.testing import parameterized
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow_privacy.privacy.dp_query import tree_aggregation
|
||||||
|
|
||||||
|
|
||||||
|
class ConstantValueGenerator(tree_aggregation.ValueGenerator):
|
||||||
|
|
||||||
|
def __init__(self, constant_value):
|
||||||
|
self.constant_value = constant_value
|
||||||
|
|
||||||
|
def initialize(self):
|
||||||
|
return ()
|
||||||
|
|
||||||
|
def next(self, state):
|
||||||
|
return self.constant_value, state
|
||||||
|
|
||||||
|
|
||||||
|
class TreeAggregatorTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total4_step1', 4, [1, 1, 2, 1], 1),
|
||||||
|
('total5_step1', 5, [1, 1, 2, 1, 2], 1),
|
||||||
|
('total6_step1', 6, [1, 1, 2, 1, 2, 2], 1),
|
||||||
|
('total7_step1', 7, [1, 1, 2, 1, 2, 2, 3], 1),
|
||||||
|
('total8_step1', 8, [1, 1, 2, 1, 2, 2, 3, 1], 1),
|
||||||
|
('total8_step2', 8, [2, 2, 4, 2, 4, 4, 6, 2], 2),
|
||||||
|
('total8_step0d5', 8, [0.5, 0.5, 1, 0.5, 1, 1, 1.5, 0.5], 0.5))
|
||||||
|
def test_tree_sum_steps_expected(self, total_steps, expected_values,
|
||||||
|
node_value):
|
||||||
|
# Test whether `tree_aggregator` will output `expected_value` in each step
|
||||||
|
# when `total_steps` of leaf nodes are traversed. The value of each tree
|
||||||
|
# node is a constant `node_value` for test purpose. Note that `node_value`
|
||||||
|
# denotes the "noise" without private values in private algorithms.
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(node_value))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertEqual(expected_values[leaf_node_idx], val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total16_step1', 16, 1, 1),
|
||||||
|
('total17_step1', 17, 2, 1),
|
||||||
|
('total18_step1', 18, 2, 1),
|
||||||
|
('total19_step1', 19, 3, 1),
|
||||||
|
('total20_step0d5', 20, 1, 0.5),
|
||||||
|
('total21_step2', 21, 6, 2),
|
||||||
|
('total1024_step1', 1024, 1, 1),
|
||||||
|
('total1025_step1', 1025, 2, 1),
|
||||||
|
('total1026_step1', 1026, 2, 1),
|
||||||
|
('total1027_step1', 1027, 3, 1),
|
||||||
|
('total1028_step0d5', 1028, 1, 0.5),
|
||||||
|
('total1029_step2', 1029, 6, 2),
|
||||||
|
)
|
||||||
|
def test_tree_sum_last_step_expected(self, total_steps, expected_value,
|
||||||
|
node_value):
|
||||||
|
# Test whether `tree_aggregator` will output `expected_value` after
|
||||||
|
# `total_steps` of leaf nodes are traversed. The value of each tree node
|
||||||
|
# is a constant `node_value` for test purpose. Note that `node_value`
|
||||||
|
# denotes the "noise" without private values in private algorithms.
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(node_value))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertEqual(expected_value, val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total16_step1', 16, 1, 1),
|
||||||
|
('total17_step1', 17, 2, 1),
|
||||||
|
('total18_step1', 18, 2, 1),
|
||||||
|
('total19_step1', 19, 3, 1),
|
||||||
|
('total20_step0d5', 20, 1, 0.5),
|
||||||
|
('total21_step2', 21, 6, 2),
|
||||||
|
('total1024_step1', 1024, 1, 1),
|
||||||
|
('total1025_step1', 1025, 2, 1),
|
||||||
|
('total1026_step1', 1026, 2, 1),
|
||||||
|
('total1027_step1', 1027, 3, 1),
|
||||||
|
('total1028_step0d5', 1028, 1, 0.5),
|
||||||
|
('total1029_step2', 1029, 6, 2),
|
||||||
|
)
|
||||||
|
def test_tree_sum_last_step_expected_value_fn(self, total_steps,
|
||||||
|
expected_value, node_value):
|
||||||
|
# Test no-arg function as stateless value generator.
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=lambda: node_value)
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertEqual(expected_value, val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total8_step1', 8, 1),
|
||||||
|
('total8_step2', 8, 2),
|
||||||
|
('total8_step0d5', 8, 0.5),
|
||||||
|
('total32_step0d5', 32, 0.5),
|
||||||
|
('total1024_step0d5', 1024, 0.5),
|
||||||
|
('total2020_step0d5', 2020, 0.5),
|
||||||
|
)
|
||||||
|
def test_tree_sum_steps_max(self, total_steps, node_value):
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(node_value))
|
||||||
|
max_val = node_value * math.ceil(math.log2(total_steps))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertLessEqual(val, max_val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total4_std1_d1000', 4, [1, 1, 2, 1], 1, [1000], 0.15),
|
||||||
|
('total4_std1_d10000', 4, [1, 1, 2, 1], 1, [10000], 0.05),
|
||||||
|
('total7_std1_d1000', 7, [1, 1, 2, 1, 2, 2, 3], 1, [1000], 0.15),
|
||||||
|
('total8_std1_d1000', 8, [1, 1, 2, 1, 2, 2, 3, 1], 1, [1000], 0.15),
|
||||||
|
('total8_std2_d1000', 8, [4, 4, 8, 4, 8, 8, 12, 4], 2, [1000], 0.15),
|
||||||
|
('total8_std0d5_d1000', 8, [0.25, 0.25, 0.5, 0.25, 0.5, 0.5, 0.75, 0.25
|
||||||
|
], 0.5, [1000], 0.15))
|
||||||
|
def test_tree_sum_noise_expected(self, total_steps, expected_variance,
|
||||||
|
noise_std, variable_shape, tolerance):
|
||||||
|
# Test whether `tree_aggregator` will output `expected_variance` (within a
|
||||||
|
# relative `tolerance`) in each step when `total_steps` of leaf nodes are
|
||||||
|
# traversed. Each tree node is a `variable_shape` tensor of Gaussian noise
|
||||||
|
# with `noise_std`.
|
||||||
|
random_generator = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std, tf.TensorSpec(variable_shape), seed=2020)
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=random_generator)
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertAllClose(
|
||||||
|
math.sqrt(expected_variance[leaf_node_idx]),
|
||||||
|
tf.math.reduce_std(val),
|
||||||
|
rtol=tolerance)
|
||||||
|
|
||||||
|
def test_cumsum_vector(self, total_steps=15):
|
||||||
|
|
||||||
|
tree_aggregator = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator([
|
||||||
|
tf.ones([2, 2], dtype=tf.float32),
|
||||||
|
tf.constant([2], dtype=tf.float32)
|
||||||
|
]))
|
||||||
|
tree_aggregator_truth = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(1.))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
truth_state = tree_aggregator_truth.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
expected_val, truth_state = tree_aggregator_truth.get_cumsum_and_update(
|
||||||
|
truth_state)
|
||||||
|
self.assertEqual(
|
||||||
|
tree_aggregation.get_step_idx(state),
|
||||||
|
tree_aggregation.get_step_idx(truth_state))
|
||||||
|
expected_result = [
|
||||||
|
expected_val * tf.ones([2, 2], dtype=tf.float32),
|
||||||
|
expected_val * tf.constant([2], dtype=tf.float32),
|
||||||
|
]
|
||||||
|
tf.nest.map_structure(self.assertAllEqual, val, expected_result)
|
||||||
|
|
||||||
|
|
||||||
|
class EfficientTreeAggregatorTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total1_step1', 1, 1, 1.),
|
||||||
|
('total2_step1', 2, 4. / 3., 1.),
|
||||||
|
('total3_step1', 3, 4. / 3. + 1., 1.),
|
||||||
|
('total4_step1', 4, 12. / 7., 1.),
|
||||||
|
('total5_step1', 5, 12. / 7. + 1., 1.),
|
||||||
|
('total6_step1', 6, 12. / 7. + 4. / 3., 1.),
|
||||||
|
('total7_step1', 7, 12. / 7. + 4. / 3. + 1., 1.),
|
||||||
|
('total8_step1', 8, 32. / 15., 1.),
|
||||||
|
('total1024_step1', 1024, 11. / (2 - .5**10), 1.),
|
||||||
|
('total1025_step1', 1025, 11. / (2 - .5**10) + 1., 1.),
|
||||||
|
('total1026_step1', 1026, 11. / (2 - .5**10) + 4. / 3., 1.),
|
||||||
|
('total1027_step1', 1027, 11. / (2 - .5**10) + 4. / 3. + 1.0, 1.),
|
||||||
|
('total1028_step0d5', 1028, (11. / (2 - .5**10) + 12. / 7.) * .5, .5),
|
||||||
|
('total1029_step2', 1029, (11. / (2 - .5**10) + 12. / 7. + 1.) * 2., 2.),
|
||||||
|
)
|
||||||
|
def test_tree_sum_last_step_expected(self, total_steps, expected_value,
|
||||||
|
step_value):
|
||||||
|
# Test whether `tree_aggregator` will output `expected_value` after
|
||||||
|
# `total_steps` of leaf nodes are traversed. The value of each tree node
|
||||||
|
# is a constant `node_value` for test purpose. Note that `node_value`
|
||||||
|
# denotes the "noise" without private values in private algorithms. The
|
||||||
|
# `expected_value` is based on a weighting schema strongly depends on the
|
||||||
|
# depth of the binary tree.
|
||||||
|
tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(step_value))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertAllClose(expected_value, val)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total4_std1_d1000', 4, 4. / 7., 1., [1000], 0.15),
|
||||||
|
('total4_std1_d10000', 4, 4. / 7., 1., [10000], 0.05),
|
||||||
|
('total7_std1_d1000', 7, 4. / 7. + 2. / 3. + 1., 1, [1000], 0.15),
|
||||||
|
('total8_std1_d1000', 8, 8. / 15., 1., [1000], 0.15),
|
||||||
|
('total8_std2_d1000', 8, 8. / 15. * 4, 2., [1000], 0.15),
|
||||||
|
('total8_std0d5_d1000', 8, 8. / 15. * .25, .5, [1000], 0.15))
|
||||||
|
def test_tree_sum_noise_expected(self, total_steps, expected_variance,
|
||||||
|
noise_std, variable_shape, tolerance):
|
||||||
|
# Test whether `tree_aggregator` will output `expected_variance` (within a
|
||||||
|
# relative `tolerance`) after `total_steps` of leaf nodes are traversed.
|
||||||
|
# Each tree node is a `variable_shape` tensor of Gaussian noise with
|
||||||
|
# `noise_std`. Note that the variance of a tree node is smaller than
|
||||||
|
# the given vanilla node `noise_std` because of the update rule of
|
||||||
|
# `EfficientTreeAggregator`.
|
||||||
|
random_generator = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std, tf.TensorSpec(variable_shape), seed=2020)
|
||||||
|
tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
value_generator=random_generator)
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
self.assertAllClose(
|
||||||
|
math.sqrt(expected_variance), tf.math.reduce_std(val), rtol=tolerance)
|
||||||
|
|
||||||
|
@parameterized.named_parameters(
|
||||||
|
('total4_std1_d1000', 4, 1., [1000], 1e-6),
|
||||||
|
('total30_std2_d1000', 30, 2, [1000], 1e-6),
|
||||||
|
('total32_std0d5_d1000', 32, .5, [1000], 1e-6),
|
||||||
|
('total60_std1_d1000', 60, 1, [1000], 1e-6),
|
||||||
|
)
|
||||||
|
def test_tree_sum_noise_efficient(self, total_steps, noise_std,
|
||||||
|
variable_shape, tolerance):
|
||||||
|
# Test the variance returned by `EfficientTreeAggregator` is smaller than
|
||||||
|
# `TreeAggregator` (within a relative `tolerance`) after `total_steps` of
|
||||||
|
# leaf nodes are traversed. Each tree node is a `variable_shape` tensor of
|
||||||
|
# Gaussian noise with `noise_std`. A small `tolerance` is used for numerical
|
||||||
|
# stability, `tolerance==0` means `EfficientTreeAggregator` is strictly
|
||||||
|
# better than `TreeAggregator` for reducing variance.
|
||||||
|
random_generator = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std, tf.TensorSpec(variable_shape))
|
||||||
|
tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
value_generator=random_generator)
|
||||||
|
tree_aggregator_baseline = tree_aggregation.TreeAggregator(
|
||||||
|
value_generator=random_generator)
|
||||||
|
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
state_baseline = tree_aggregator_baseline.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
val_baseline, state_baseline = tree_aggregator_baseline.get_cumsum_and_update(
|
||||||
|
state_baseline)
|
||||||
|
self.assertLess(
|
||||||
|
tf.math.reduce_variance(val),
|
||||||
|
(1 + tolerance) * tf.math.reduce_variance(val_baseline))
|
||||||
|
|
||||||
|
def test_cumsum_vector(self, total_steps=15):
|
||||||
|
|
||||||
|
tree_aggregator = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator([
|
||||||
|
tf.ones([2, 2], dtype=tf.float32),
|
||||||
|
tf.constant([2], dtype=tf.float32)
|
||||||
|
]))
|
||||||
|
tree_aggregator_truth = tree_aggregation.EfficientTreeAggregator(
|
||||||
|
value_generator=ConstantValueGenerator(1.))
|
||||||
|
state = tree_aggregator.init_state()
|
||||||
|
truth_state = tree_aggregator_truth.init_state()
|
||||||
|
for leaf_node_idx in range(total_steps):
|
||||||
|
self.assertEqual(leaf_node_idx, tree_aggregation.get_step_idx(state))
|
||||||
|
val, state = tree_aggregator.get_cumsum_and_update(state)
|
||||||
|
expected_val, truth_state = tree_aggregator_truth.get_cumsum_and_update(
|
||||||
|
truth_state)
|
||||||
|
self.assertEqual(
|
||||||
|
tree_aggregation.get_step_idx(state),
|
||||||
|
tree_aggregation.get_step_idx(truth_state))
|
||||||
|
expected_result = [
|
||||||
|
expected_val * tf.ones([2, 2], dtype=tf.float32),
|
||||||
|
expected_val * tf.constant([2], dtype=tf.float32),
|
||||||
|
]
|
||||||
|
tf.nest.map_structure(self.assertAllClose, val, expected_result)
|
||||||
|
|
||||||
|
|
||||||
|
class GaussianNoiseGeneratorTest(tf.test.TestCase):
|
||||||
|
|
||||||
|
def test_random_generator_tf(self,
|
||||||
|
noise_mean=1.0,
|
||||||
|
noise_std=1.0,
|
||||||
|
samples=1000,
|
||||||
|
tolerance=0.15):
|
||||||
|
g = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std, specs=tf.TensorSpec([]), seed=2020)
|
||||||
|
gstate = g.initialize()
|
||||||
|
|
||||||
|
@tf.function
|
||||||
|
def return_noise(state):
|
||||||
|
value, state = g.next(state)
|
||||||
|
return noise_mean + value, state
|
||||||
|
|
||||||
|
noise_values = []
|
||||||
|
for _ in range(samples):
|
||||||
|
value, gstate = return_noise(gstate)
|
||||||
|
noise_values.append(value)
|
||||||
|
noise_values = tf.stack(noise_values)
|
||||||
|
self.assertAllClose(
|
||||||
|
[tf.math.reduce_mean(noise_values),
|
||||||
|
tf.math.reduce_std(noise_values)], [noise_mean, noise_std],
|
||||||
|
rtol=tolerance)
|
||||||
|
|
||||||
|
def test_seed_state(self, seed=1, steps=32, noise_std=0.1):
|
||||||
|
g = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=tf.TensorSpec([]), seed=seed)
|
||||||
|
gstate = g.initialize()
|
||||||
|
g2 = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=tf.TensorSpec([]), seed=seed)
|
||||||
|
gstate2 = g.initialize()
|
||||||
|
self.assertAllEqual(gstate, gstate2)
|
||||||
|
for _ in range(steps):
|
||||||
|
value, gstate = g.next(gstate)
|
||||||
|
value2, gstate2 = g2.next(gstate2)
|
||||||
|
self.assertAllEqual(value, value2)
|
||||||
|
self.assertAllEqual(gstate, gstate2)
|
||||||
|
|
||||||
|
def test_seed_state_nondeterministic(self, steps=32, noise_std=0.1):
|
||||||
|
g = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=tf.TensorSpec([]))
|
||||||
|
gstate = g.initialize()
|
||||||
|
g2 = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=tf.TensorSpec([]))
|
||||||
|
gstate2 = g2.initialize()
|
||||||
|
for _ in range(steps):
|
||||||
|
value, gstate = g.next(gstate)
|
||||||
|
value2, gstate2 = g2.next(gstate2)
|
||||||
|
self.assertNotAllEqual(value, value2)
|
||||||
|
self.assertNotAllEqual(gstate, gstate2)
|
||||||
|
|
||||||
|
def test_seed_state_structure(self, seed=1, steps=32, noise_std=0.1):
|
||||||
|
specs = [tf.TensorSpec([]), tf.TensorSpec([1]), tf.TensorSpec([2, 2])]
|
||||||
|
g = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=specs, seed=seed)
|
||||||
|
gstate = g.initialize()
|
||||||
|
g2 = tree_aggregation.GaussianNoiseGenerator(
|
||||||
|
noise_std=noise_std, specs=specs, seed=seed)
|
||||||
|
gstate2 = g2.initialize()
|
||||||
|
for _ in range(steps):
|
||||||
|
value, gstate = g.next(gstate)
|
||||||
|
value2, gstate2 = g2.next(gstate2)
|
||||||
|
self.assertAllClose(value, value2)
|
||||||
|
self.assertAllEqual(gstate, gstate2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
Loading…
Reference in a new issue