COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/privacy/pull/89 from woodyx218:GDPrivacy d06340e1cf
PiperOrigin-RevId: 306534693
This commit is contained in:
parent
ca25bde1f8
commit
9627cc0ed8
4 changed files with 649 additions and 0 deletions
175
research/GDP_2019/adult_tutorial.py
Normal file
175
research/GDP_2019/adult_tutorial.py
Normal file
|
@ -0,0 +1,175 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Training a one-layer NN on Adult data with differentially private SGD optimizer."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import KFold
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
#### FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD.'
|
||||
'If False, train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.55,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
|
||||
flags.DEFINE_integer('epochs', 20, 'Number of epochs')
|
||||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
sampling_batch = 256
|
||||
microbatches = 256
|
||||
num_examples = 29305
|
||||
|
||||
|
||||
def nn_model_fn(features, labels, mode):
|
||||
"""Define CNN architecture using tf.keras.layers."""
|
||||
input_layer = tf.reshape(features['x'], [-1, 123])
|
||||
y = tf.keras.layers.Dense(16, activation='relu').apply(input_layer)
|
||||
logits = tf.keras.layers.Dense(2).apply(y)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits)
|
||||
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = scalar_loss
|
||||
global_step = tf.compat.v1.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
||||
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
||||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
if mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.compat.v1.metrics.accuracy(
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def load_adult():
|
||||
"""Loads ADULT a2a as in LIBSVM and preprocesses to combine training and validation data."""
|
||||
# https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
|
||||
|
||||
x = pd.read_csv('adult.csv')
|
||||
kf = KFold(n_splits=10)
|
||||
for train_index, test_index in kf.split(x):
|
||||
train, test = x.iloc[train_index, :], x.iloc[test_index, :]
|
||||
train_data = train.iloc[:, range(x.shape[1] - 1)].values.astype('float32')
|
||||
test_data = test.iloc[:, range(x.shape[1] - 1)].values.astype('float32')
|
||||
|
||||
train_labels = (train.iloc[:, x.shape[1] - 1] == 1).astype('int32').values
|
||||
test_labels = (test.iloc[:, x.shape[1] - 1] == 1).astype('int32').values
|
||||
|
||||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.compat.v1.logging.set_verbosity(0)
|
||||
|
||||
# Load training and test data.
|
||||
train_data, train_labels, test_data, test_labels = load_adult()
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
adult_classifier = tf.compat.v1.estimator.Estimator(
|
||||
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for _ in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (
|
||||
1 - sampling_batch / num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
||||
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={'x': train_data[subsampling]},
|
||||
y=train_labels[subsampling],
|
||||
batch_size=len(subsampling),
|
||||
num_epochs=1,
|
||||
shuffle=True)
|
||||
# Train the model for one step.
|
||||
adult_classifier.train(input_fn=train_input_fn, steps=1)
|
||||
|
||||
# Evaluate the model and print results
|
||||
eval_results = adult_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
test_accuracy_list.append(test_accuracy)
|
||||
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
||||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch)
|
||||
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-5, the current mu is: %.2f' % mu)
|
||||
|
||||
if mu > FLAGS.max_mu:
|
||||
break
|
||||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
175
research/GDP_2019/imdb_tutorial.py
Normal file
175
research/GDP_2019/imdb_tutorial.py
Normal file
|
@ -0,0 +1,175 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Training a deep NN on IMDB reviews with differentially private Adam optimizer."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
from keras.preprocessing import sequence
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
#### FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.56,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
|
||||
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
|
||||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
sampling_batch = 512
|
||||
microbatches = 512
|
||||
|
||||
max_features = 10000
|
||||
maxlen = 256
|
||||
num_examples = 25000
|
||||
|
||||
|
||||
def nn_model_fn(features, labels, mode):
|
||||
"""Define NN architecture using tf.keras.layers."""
|
||||
input_layer = tf.reshape(features['x'], [-1, maxlen])
|
||||
y = tf.keras.layers.Embedding(max_features, 16).apply(input_layer)
|
||||
y = tf.keras.layers.GlobalAveragePooling1D().apply(y)
|
||||
y = tf.keras.layers.Dense(16, activation='relu').apply(y)
|
||||
logits = tf.keras.layers.Dense(2).apply(y)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits)
|
||||
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
optimizer = tf.compat.v1.train.AdamOptimizer(
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = scalar_loss
|
||||
|
||||
global_step = tf.compat.v1.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
||||
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
||||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
if mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.compat.v1.metrics.accuracy(
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
return None
|
||||
|
||||
|
||||
def load_imdb():
|
||||
"""Load IMDB movie reviews data."""
|
||||
(train_data, train_labels), (test_data,
|
||||
test_labels) = tf.keras.datasets.imdb.load_data(
|
||||
num_words=max_features)
|
||||
|
||||
train_data = sequence.pad_sequences(
|
||||
train_data, maxlen=maxlen).astype('float32')
|
||||
test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32')
|
||||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.compat.v1.logging.set_verbosity(3)
|
||||
|
||||
# Load training and test data.
|
||||
train_data, train_labels, test_data, test_labels = load_imdb()
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
imdb_classifier = tf.estimator.Estimator(
|
||||
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for _ in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (
|
||||
1 - sampling_batch / num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
||||
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={'x': train_data[subsampling]},
|
||||
y=train_labels[subsampling],
|
||||
batch_size=len(subsampling),
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
# Train the model for one step.
|
||||
imdb_classifier.train(input_fn=train_input_fn, steps=1)
|
||||
|
||||
# Evaluate the model and print results
|
||||
eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
test_accuracy_list.append(test_accuracy)
|
||||
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
||||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch)
|
||||
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-5, the current mu is: %.2f' % mu)
|
||||
|
||||
if mu > FLAGS.max_mu:
|
||||
break
|
||||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
71
tensorflow_privacy/privacy/analysis/gdp_accountant.py
Normal file
71
tensorflow_privacy/privacy/analysis/gdp_accountant.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
r"""Implements privacy accounting for Gaussian Differential Privacy.
|
||||
|
||||
Applies the Dual and Central Limit Theorem (CLT) to estimate privacy budget of
|
||||
an iterated subsampled Gaussian Mechanism (by either uniform or Poisson
|
||||
subsampling).
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from scipy import optimize
|
||||
from scipy.stats import norm
|
||||
|
||||
|
||||
def compute_mu_uniform(epoch, noise_multi, n, batch_size):
|
||||
"""Compute mu from uniform subsampling."""
|
||||
|
||||
t = epoch * n / batch_size
|
||||
c = batch_size * np.sqrt(t) / n
|
||||
return np.sqrt(2) * c * np.sqrt(
|
||||
np.exp(noise_multi**(-2)) * norm.cdf(1.5 / noise_multi) +
|
||||
3 * norm.cdf(-0.5 / noise_multi) - 2)
|
||||
|
||||
|
||||
def compute_mu_poisson(epoch, noise_multi, n, batch_size):
|
||||
"""Compute mu from Poisson subsampling."""
|
||||
|
||||
t = epoch * n / batch_size
|
||||
return np.sqrt(np.exp(noise_multi**(-2)) - 1) * np.sqrt(t) * batch_size / n
|
||||
|
||||
|
||||
def delta_eps_mu(eps, mu):
|
||||
"""Compute dual between mu-GDP and (epsilon, delta)-DP."""
|
||||
return norm.cdf(-eps / mu +
|
||||
mu / 2) - np.exp(eps) * norm.cdf(-eps / mu - mu / 2)
|
||||
|
||||
|
||||
def eps_from_mu(mu, delta):
|
||||
"""Compute epsilon from mu given delta via inverse dual."""
|
||||
|
||||
def f(x):
|
||||
"""Reversely solve dual by matching delta."""
|
||||
return delta_eps_mu(x, mu) - delta
|
||||
|
||||
return optimize.root_scalar(f, bracket=[0, 500], method='brentq').root
|
||||
|
||||
|
||||
def compute_eps_uniform(epoch, noise_multi, n, batch_size, delta):
|
||||
"""Compute epsilon given delta from inverse dual of uniform subsampling."""
|
||||
|
||||
return eps_from_mu(
|
||||
compute_mu_uniform(epoch, noise_multi, n, batch_size), delta)
|
||||
|
||||
|
||||
def compute_eps_poisson(epoch, noise_multi, n, batch_size, delta):
|
||||
"""Compute epsilon given delta from inverse dual of Poisson subsampling."""
|
||||
|
||||
return eps_from_mu(
|
||||
compute_mu_poisson(epoch, noise_multi, n, batch_size), delta)
|
228
tutorials/movielens_tutorial.py
Normal file
228
tutorials/movielens_tutorial.py
Normal file
|
@ -0,0 +1,228 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Training a deep NN on MovieLens with differentially private Adam optimizer."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.stats import rankdata
|
||||
from sklearn.model_selection import train_test_split
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
|
||||
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
#### FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.55,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
|
||||
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
|
||||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
sampling_batch = 10000
|
||||
microbatches = 10000
|
||||
num_examples = 800167
|
||||
|
||||
|
||||
def nn_model_fn(features, labels, mode):
|
||||
"""NN adapted from github.com/hexiangnan/neural_collaborative_filtering."""
|
||||
n_latent_factors_user = 10
|
||||
n_latent_factors_movie = 10
|
||||
n_latent_factors_mf = 5
|
||||
|
||||
user_input = tf.reshape(features['user'], [-1, 1])
|
||||
item_input = tf.reshape(features['movie'], [-1, 1])
|
||||
|
||||
# number of users: 6040; number of movies: 3706
|
||||
mf_embedding_user = tf.keras.layers.Embedding(
|
||||
6040, n_latent_factors_mf, input_length=1)
|
||||
mf_embedding_item = tf.keras.layers.Embedding(
|
||||
3706, n_latent_factors_mf, input_length=1)
|
||||
mlp_embedding_user = tf.keras.layers.Embedding(
|
||||
6040, n_latent_factors_user, input_length=1)
|
||||
mlp_embedding_item = tf.keras.layers.Embedding(
|
||||
3706, n_latent_factors_movie, input_length=1)
|
||||
|
||||
# GMF part
|
||||
# Flatten the embedding vector as latent features in GMF
|
||||
mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
|
||||
mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
|
||||
# Element-wise multiply
|
||||
mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])
|
||||
|
||||
# MLP part
|
||||
# Flatten the embedding vector as latent features in MLP
|
||||
mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
|
||||
mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
|
||||
# Concatenation of two latent features
|
||||
mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
|
||||
|
||||
predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])
|
||||
|
||||
logits = tf.keras.layers.Dense(5)(predict_vector)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits)
|
||||
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
optimizer = tf.compat.v1.train.AdamOptimizer(
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = scalar_loss
|
||||
|
||||
global_step = tf.compat.v1.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
||||
# In the following, we pass the mean of the loss (scalar_loss) rather than
|
||||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
if mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'rmse':
|
||||
tf.compat.v1.metrics.root_mean_squared_error(
|
||||
labels=tf.cast(labels, tf.float32),
|
||||
predictions=tf.tensordot(
|
||||
a=tf.nn.softmax(logits, axis=1),
|
||||
b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32),
|
||||
axes=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
return None
|
||||
|
||||
|
||||
def load_movielens():
|
||||
"""Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m."""
|
||||
data = pd.read_csv(
|
||||
'ratings.dat',
|
||||
sep='::',
|
||||
header=None,
|
||||
names=['userId', 'movieId', 'rating', 'timestamp'])
|
||||
n_users = len(set(data['userId']))
|
||||
n_movies = len(set(data['movieId']))
|
||||
print('number of movie: ', n_movies)
|
||||
print('number of user: ', n_users)
|
||||
|
||||
# give unique dense movie index to movieId
|
||||
data['movieIndex'] = rankdata(data['movieId'], method='dense')
|
||||
# minus one to reduce the minimum value to 0, which is the start of col index
|
||||
|
||||
print('number of ratings:', data.shape[0])
|
||||
print('percentage of sparsity:',
|
||||
(1 - data.shape[0] / n_users / n_movies) * 100, '%')
|
||||
|
||||
train, test = train_test_split(data, test_size=0.2, random_state=100)
|
||||
|
||||
return train.values - 1, test.values - 1, np.mean(train['rating'])
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.compat.v1.logging.set_verbosity(3)
|
||||
|
||||
# Load training and test data.
|
||||
train_data, test_data, _ = load_movielens()
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
ml_classifier = tf.estimator.Estimator(
|
||||
model_fn=nn_model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={
|
||||
'user': test_data[:, 0],
|
||||
'movie': test_data[:, 4]
|
||||
},
|
||||
y=test_data[:, 2],
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for _ in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (
|
||||
1 - sampling_batch / num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
||||
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
|
||||
x={
|
||||
'user': train_data[subsampling, 0],
|
||||
'movie': train_data[subsampling, 4]
|
||||
},
|
||||
y=train_data[subsampling, 2],
|
||||
batch_size=len(subsampling),
|
||||
num_epochs=1,
|
||||
shuffle=True)
|
||||
# Train the model for one step.
|
||||
ml_classifier.train(input_fn=train_input_fn, steps=1)
|
||||
|
||||
# Evaluate the model and print results
|
||||
eval_results = ml_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['rmse']
|
||||
test_accuracy_list.append(test_accuracy)
|
||||
print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))
|
||||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch, 1e-6)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
|
||||
sampling_batch)
|
||||
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-6, the current mu is: %.2f' % mu)
|
||||
|
||||
if mu > FLAGS.max_mu:
|
||||
break
|
||||
else:
|
||||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
Loading…
Reference in a new issue