Refactor of common functions in binary and multiclass heads.
PiperOrigin-RevId: 325957037
This commit is contained in:
parent
3a641e077e
commit
99afaed68e
4 changed files with 128 additions and 144 deletions
|
@ -20,8 +20,7 @@ py_library(
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
"//third_party/py/tensorflow",
|
"//third_party/py/tensorflow",
|
||||||
# TODO(b/163395075): Remove this dependency once necessary function is public.
|
"//third_party/tensorflow/python:keras_lib", # TODO(b/163395075): Remove when fixed.
|
||||||
"//third_party/tensorflow/python:keras_lib",
|
|
||||||
"//third_party/tensorflow_estimator",
|
"//third_party/tensorflow_estimator",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
@ -33,12 +32,21 @@ py_library(
|
||||||
],
|
],
|
||||||
deps = [
|
deps = [
|
||||||
"//third_party/py/tensorflow",
|
"//third_party/py/tensorflow",
|
||||||
# TODO(b/163395075): Remove this dependency once necessary function is public.
|
"//third_party/tensorflow/python:keras_lib", # TODO(b/163395075): Remove when fixed.
|
||||||
"//third_party/tensorflow/python:keras_lib",
|
|
||||||
"//third_party/tensorflow_estimator",
|
"//third_party/tensorflow_estimator",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "test_utils",
|
||||||
|
srcs = [
|
||||||
|
"test_utils.py",
|
||||||
|
],
|
||||||
|
deps = [
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
py_test(
|
py_test(
|
||||||
name = "binary_class_head_test",
|
name = "binary_class_head_test",
|
||||||
timeout = "long",
|
timeout = "long",
|
||||||
|
@ -46,8 +54,7 @@ py_test(
|
||||||
python_version = "PY3",
|
python_version = "PY3",
|
||||||
deps = [
|
deps = [
|
||||||
":binary_class_head",
|
":binary_class_head",
|
||||||
"//third_party/py/absl/testing:parameterized",
|
":test_utils",
|
||||||
"//third_party/py/six",
|
|
||||||
"//third_party/py/tensorflow",
|
"//third_party/py/tensorflow",
|
||||||
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
||||||
],
|
],
|
||||||
|
@ -60,8 +67,7 @@ py_test(
|
||||||
python_version = "PY3",
|
python_version = "PY3",
|
||||||
deps = [
|
deps = [
|
||||||
":multi_class_head",
|
":multi_class_head",
|
||||||
"//third_party/py/absl/testing:parameterized",
|
":test_utils",
|
||||||
"//third_party/py/six",
|
|
||||||
"//third_party/py/tensorflow",
|
"//third_party/py/tensorflow",
|
||||||
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
||||||
],
|
],
|
||||||
|
|
|
@ -21,64 +21,12 @@ from __future__ import print_function
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow_privacy.privacy.estimators import binary_class_head
|
from tensorflow_privacy.privacy.estimators import binary_class_head
|
||||||
|
from tensorflow_privacy.privacy.estimators import test_utils
|
||||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
||||||
|
|
||||||
|
|
||||||
class DPBinaryClassHeadTest(tf.test.TestCase):
|
class DPBinaryClassHeadTest(tf.test.TestCase):
|
||||||
"""Tests for DP-enabled heads."""
|
"""Tests for DP-enabled binary class heads."""
|
||||||
|
|
||||||
def _make_input_data(self, size):
|
|
||||||
"""Create raw input data."""
|
|
||||||
feature_a = np.random.normal(4, 1, (size))
|
|
||||||
feature_b = np.random.normal(5, 0.7, (size))
|
|
||||||
feature_c = np.random.normal(6, 2, (size))
|
|
||||||
noise = np.random.normal(0, 30, (size))
|
|
||||||
features = {
|
|
||||||
'feature_a': feature_a,
|
|
||||||
'feature_b': feature_b,
|
|
||||||
'feature_c': feature_c,
|
|
||||||
}
|
|
||||||
labels = np.array(
|
|
||||||
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
|
||||||
np.power(feature_c, 1) + noise > 125).astype(int)
|
|
||||||
return features, labels
|
|
||||||
|
|
||||||
def _make_input_fn(self, features, labels, training, batch_size=16):
|
|
||||||
|
|
||||||
def input_fn():
|
|
||||||
"""An input function for training or evaluating."""
|
|
||||||
# Convert the inputs to a Dataset.
|
|
||||||
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
|
|
||||||
|
|
||||||
# Shuffle if in training mode.
|
|
||||||
if training:
|
|
||||||
dataset = dataset.shuffle(1000)
|
|
||||||
|
|
||||||
return dataset.batch(batch_size)
|
|
||||||
|
|
||||||
return input_fn
|
|
||||||
|
|
||||||
def _make_model_fn(self, head, optimizer, feature_columns):
|
|
||||||
"""Constructs and returns a model_fn using DPBinaryClassHead."""
|
|
||||||
|
|
||||||
def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument
|
|
||||||
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
|
|
||||||
inputs = feature_layer(features)
|
|
||||||
hidden_layer = tf.keras.layers.Dense(units=3, activation='relu')
|
|
||||||
hidden_layer_values = hidden_layer(inputs)
|
|
||||||
logits_layer = tf.keras.layers.Dense(
|
|
||||||
units=head.logits_dimension, activation=None)
|
|
||||||
logits = logits_layer(hidden_layer_values)
|
|
||||||
return head.create_estimator_spec(
|
|
||||||
features=features,
|
|
||||||
labels=labels,
|
|
||||||
mode=mode,
|
|
||||||
logits=logits,
|
|
||||||
trainable_variables=hidden_layer.trainable_weights +
|
|
||||||
logits_layer.trainable_weights,
|
|
||||||
optimizer=optimizer)
|
|
||||||
|
|
||||||
return model_fn
|
|
||||||
|
|
||||||
def testLoss(self):
|
def testLoss(self):
|
||||||
"""Tests loss() returns per-example losses."""
|
"""Tests loss() returns per-example losses."""
|
||||||
|
@ -104,7 +52,7 @@ class DPBinaryClassHeadTest(tf.test.TestCase):
|
||||||
def testCreateTPUEstimatorSpec(self):
|
def testCreateTPUEstimatorSpec(self):
|
||||||
"""Tests that an Estimator built with this head works."""
|
"""Tests that an Estimator built with this head works."""
|
||||||
|
|
||||||
train_features, train_labels = self._make_input_data(256)
|
train_features, train_labels = test_utils.make_input_data(256, 2)
|
||||||
feature_columns = []
|
feature_columns = []
|
||||||
for key in train_features:
|
for key in train_features:
|
||||||
feature_columns.append(tf.feature_column.numeric_column(key=key))
|
feature_columns.append(tf.feature_column.numeric_column(key=key))
|
||||||
|
@ -115,21 +63,22 @@ class DPBinaryClassHeadTest(tf.test.TestCase):
|
||||||
l2_norm_clip=1.0,
|
l2_norm_clip=1.0,
|
||||||
noise_multiplier=0.0,
|
noise_multiplier=0.0,
|
||||||
num_microbatches=2)
|
num_microbatches=2)
|
||||||
model_fn = self._make_model_fn(head, optimizer, feature_columns)
|
model_fn = test_utils.make_model_fn(head, optimizer, feature_columns)
|
||||||
classifier = tf.estimator.Estimator(model_fn=model_fn)
|
classifier = tf.estimator.Estimator(model_fn=model_fn)
|
||||||
|
|
||||||
classifier.train(
|
classifier.train(
|
||||||
input_fn=self._make_input_fn(train_features, train_labels, True),
|
input_fn=test_utils.make_input_fn(train_features, train_labels, True),
|
||||||
steps=4)
|
steps=4)
|
||||||
|
|
||||||
test_features, test_labels = self._make_input_data(64)
|
test_features, test_labels = test_utils.make_input_data(64, 2)
|
||||||
classifier.evaluate(
|
classifier.evaluate(
|
||||||
input_fn=self._make_input_fn(test_features, test_labels, False),
|
input_fn=test_utils.make_input_fn(test_features, test_labels, False),
|
||||||
steps=4)
|
steps=4)
|
||||||
|
|
||||||
predict_features, predict_labels_ = self._make_input_data(64)
|
predict_features, predict_labels_ = test_utils.make_input_data(64, 2)
|
||||||
classifier.predict(
|
classifier.predict(
|
||||||
input_fn=self._make_input_fn(predict_features, predict_labels_, False))
|
input_fn=test_utils.make_input_fn(predict_features, predict_labels_,
|
||||||
|
False))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -17,78 +17,15 @@ from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
# from absl.testing import parameterized
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow_privacy.privacy.estimators import multi_class_head
|
from tensorflow_privacy.privacy.estimators import multi_class_head
|
||||||
|
from tensorflow_privacy.privacy.estimators import test_utils
|
||||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
||||||
|
|
||||||
|
|
||||||
class DPMultiClassHeadTest(tf.test.TestCase):
|
class DPMultiClassHeadTest(tf.test.TestCase):
|
||||||
"""Tests for DP-enabled heads."""
|
"""Tests for DP-enabled multiclass heads."""
|
||||||
|
|
||||||
def _make_input_data(self, size):
|
|
||||||
"""Create raw input data."""
|
|
||||||
feature_a = np.random.normal(4, 1, (size))
|
|
||||||
feature_b = np.random.normal(5, 0.7, (size))
|
|
||||||
feature_c = np.random.normal(6, 2, (size))
|
|
||||||
noise = np.random.normal(0, 30, (size))
|
|
||||||
features = {
|
|
||||||
'feature_a': feature_a,
|
|
||||||
'feature_b': feature_b,
|
|
||||||
'feature_c': feature_c,
|
|
||||||
}
|
|
||||||
|
|
||||||
def label_fn(x):
|
|
||||||
if x < 110.0:
|
|
||||||
return 0
|
|
||||||
elif x < 140.0:
|
|
||||||
return 1
|
|
||||||
else:
|
|
||||||
return 2
|
|
||||||
|
|
||||||
labels_list = map(
|
|
||||||
label_fn,
|
|
||||||
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
|
||||||
np.power(feature_c, 1) + noise)
|
|
||||||
return features, list(labels_list)
|
|
||||||
|
|
||||||
def _make_input_fn(self, features, labels, training, batch_size=16):
|
|
||||||
|
|
||||||
def input_fn():
|
|
||||||
"""An input function for training or evaluating."""
|
|
||||||
# Convert the inputs to a Dataset.
|
|
||||||
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
|
|
||||||
|
|
||||||
# Shuffle if in training mode.
|
|
||||||
if training:
|
|
||||||
dataset = dataset.shuffle(1000)
|
|
||||||
|
|
||||||
return dataset.batch(batch_size)
|
|
||||||
|
|
||||||
return input_fn
|
|
||||||
|
|
||||||
def _make_model_fn(self, head, optimizer, feature_columns):
|
|
||||||
"""Constructs and returns a model_fn using DPBinaryClassHead."""
|
|
||||||
|
|
||||||
def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument
|
|
||||||
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
|
|
||||||
inputs = feature_layer(features)
|
|
||||||
hidden_layer = tf.keras.layers.Dense(units=3, activation='relu')
|
|
||||||
hidden_layer_values = hidden_layer(inputs)
|
|
||||||
logits_layer = tf.keras.layers.Dense(
|
|
||||||
units=head.logits_dimension, activation=None)
|
|
||||||
logits = logits_layer(hidden_layer_values)
|
|
||||||
return head.create_estimator_spec(
|
|
||||||
features=features,
|
|
||||||
labels=labels,
|
|
||||||
mode=mode,
|
|
||||||
logits=logits,
|
|
||||||
trainable_variables=hidden_layer.trainable_weights +
|
|
||||||
logits_layer.trainable_weights,
|
|
||||||
optimizer=optimizer)
|
|
||||||
|
|
||||||
return model_fn
|
|
||||||
|
|
||||||
def testLoss(self):
|
def testLoss(self):
|
||||||
"""Tests loss() returns per-example losses."""
|
"""Tests loss() returns per-example losses."""
|
||||||
|
@ -118,7 +55,7 @@ class DPMultiClassHeadTest(tf.test.TestCase):
|
||||||
def testCreateTPUEstimatorSpec(self):
|
def testCreateTPUEstimatorSpec(self):
|
||||||
"""Tests that an Estimator built with this head works."""
|
"""Tests that an Estimator built with this head works."""
|
||||||
|
|
||||||
train_features, train_labels = self._make_input_data(256)
|
train_features, train_labels = test_utils.make_input_data(256, 3)
|
||||||
feature_columns = []
|
feature_columns = []
|
||||||
for key in train_features:
|
for key in train_features:
|
||||||
feature_columns.append(tf.feature_column.numeric_column(key=key))
|
feature_columns.append(tf.feature_column.numeric_column(key=key))
|
||||||
|
@ -129,23 +66,22 @@ class DPMultiClassHeadTest(tf.test.TestCase):
|
||||||
l2_norm_clip=1.0,
|
l2_norm_clip=1.0,
|
||||||
noise_multiplier=0.0,
|
noise_multiplier=0.0,
|
||||||
num_microbatches=2)
|
num_microbatches=2)
|
||||||
model_fn = self._make_model_fn(head, optimizer, feature_columns)
|
model_fn = test_utils.make_model_fn(head, optimizer, feature_columns)
|
||||||
classifier = tf.estimator.Estimator(model_fn=model_fn)
|
classifier = tf.estimator.Estimator(model_fn=model_fn)
|
||||||
|
|
||||||
classifier.train(
|
classifier.train(
|
||||||
input_fn=self._make_input_fn(train_features, train_labels, True),
|
input_fn=test_utils.make_input_fn(train_features, train_labels, True),
|
||||||
steps=4)
|
steps=4)
|
||||||
|
|
||||||
test_features, test_labels = self._make_input_data(64)
|
test_features, test_labels = test_utils.make_input_data(64, 3)
|
||||||
classifier.evaluate(
|
classifier.evaluate(
|
||||||
input_fn=self._make_input_fn(test_features, test_labels, False),
|
input_fn=test_utils.make_input_fn(test_features, test_labels, False),
|
||||||
steps=4)
|
steps=4)
|
||||||
|
|
||||||
predict_features, predict_labels_ = self._make_input_data(64)
|
predict_features, predict_labels_ = test_utils.make_input_data(64, 3)
|
||||||
predictions = classifier.predict(
|
classifier.predict(
|
||||||
input_fn=self._make_input_fn(predict_features, predict_labels_, False))
|
input_fn=test_utils.make_input_fn(predict_features, predict_labels_,
|
||||||
for p in predictions:
|
False))
|
||||||
print('schien p: ', p)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
93
tensorflow_privacy/privacy/estimators/test_utils.py
Normal file
93
tensorflow_privacy/privacy/estimators/test_utils.py
Normal file
|
@ -0,0 +1,93 @@
|
||||||
|
# Copyright 2020, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Helper functions for unit tests for DP-enabled Estimators."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
|
def make_input_data(size, classes):
|
||||||
|
"""Create raw input data for testing."""
|
||||||
|
feature_a = np.random.normal(4, 1, (size))
|
||||||
|
feature_b = np.random.normal(5, 0.7, (size))
|
||||||
|
feature_c = np.random.normal(6, 2, (size))
|
||||||
|
noise = np.random.normal(0, 30, (size))
|
||||||
|
features = {
|
||||||
|
'feature_a': feature_a,
|
||||||
|
'feature_b': feature_b,
|
||||||
|
'feature_c': feature_c,
|
||||||
|
}
|
||||||
|
|
||||||
|
if classes == 2:
|
||||||
|
labels = np.array(
|
||||||
|
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
||||||
|
np.power(feature_c, 1) + noise > 125).astype(int)
|
||||||
|
else:
|
||||||
|
def label_fn(x):
|
||||||
|
if x < 110.0:
|
||||||
|
return 0
|
||||||
|
elif x < 140.0:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return 2
|
||||||
|
|
||||||
|
labels = list(map(
|
||||||
|
label_fn,
|
||||||
|
np.power(feature_a, 3) + np.power(feature_b, 2) +
|
||||||
|
np.power(feature_c, 1) + noise))
|
||||||
|
|
||||||
|
return features, labels
|
||||||
|
|
||||||
|
|
||||||
|
def make_input_fn(features, labels, training, batch_size=16):
|
||||||
|
"""Returns an input function suitable for an estimator."""
|
||||||
|
|
||||||
|
def input_fn():
|
||||||
|
"""An input function for training or evaluating."""
|
||||||
|
# Convert the inputs to a Dataset.
|
||||||
|
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
|
||||||
|
|
||||||
|
# Shuffle if in training mode.
|
||||||
|
if training:
|
||||||
|
dataset = dataset.shuffle(1000)
|
||||||
|
|
||||||
|
return dataset.batch(batch_size)
|
||||||
|
return input_fn
|
||||||
|
|
||||||
|
|
||||||
|
def make_model_fn(head, optimizer, feature_columns):
|
||||||
|
"""Constructs and returns a model_fn using supplied head."""
|
||||||
|
|
||||||
|
def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument
|
||||||
|
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
|
||||||
|
inputs = feature_layer(features)
|
||||||
|
hidden_layer = tf.keras.layers.Dense(units=3, activation='relu')
|
||||||
|
hidden_layer_values = hidden_layer(inputs)
|
||||||
|
logits_layer = tf.keras.layers.Dense(
|
||||||
|
units=head.logits_dimension, activation=None)
|
||||||
|
logits = logits_layer(hidden_layer_values)
|
||||||
|
return head.create_estimator_spec(
|
||||||
|
features=features,
|
||||||
|
labels=labels,
|
||||||
|
mode=mode,
|
||||||
|
logits=logits,
|
||||||
|
trainable_variables=hidden_layer.trainable_weights +
|
||||||
|
logits_layer.trainable_weights,
|
||||||
|
optimizer=optimizer)
|
||||||
|
|
||||||
|
return model_fn
|
Loading…
Reference in a new issue