diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant.py b/tensorflow_privacy/privacy/analysis/rdp_accountant.py index c872318..a328a63 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant.py @@ -42,6 +42,7 @@ from __future__ import print_function import math import sys +from typing import Collection, Union import numpy as np from scipy import special @@ -397,6 +398,64 @@ def compute_rdp(q, noise_multiplier, steps, orders): return rdp * steps +def _compute_rdp_tree(sigma, steps_list, max_participation, alpha): + """Computes RDP of the Tree Aggregation Protocol at order alpha.""" + if np.isinf(alpha): + return np.inf + tree_depths = [ + math.floor(math.log2(steps)) + 1 for steps in steps_list if steps > 0 + ] + return alpha * max_participation * sum(tree_depths) / (2 * sigma**2) + + +def compute_rdp_tree( + noise_multiplier: float, steps_list: Collection[float], + max_participation: int, + orders: Union[float, Collection[float]]) -> Collection[float]: + """Computes RDP of the Tree Aggregation Protocol for Gaussian Mechanism. + + Args: + noise_multiplier: A non-negative float representing the ratio of the + standard deviation of the Gaussian noise to the l2-sensitivity of the + function to which it is added. + steps_list: A list of non-negative intergers representing the number of + steps between tree restarts. + max_participation: A positive integer representing maximum number of times a + sample may appear between tree restarts. + orders: An array (or a scalar) of RDP orders. + + Returns: + The RDPs at all orders. Can be `np.inf`. + """ + if noise_multiplier < 0: + raise ValueError( + f"Noise multiplier must be non-negative, got {noise_multiplier}") + elif noise_multiplier == 0: + return np.inf + + if max_participation <= 0: + raise ValueError( + f"Max participation must be positive, got {max_participation}") + + if not steps_list: + raise ValueError("List of steps must be non-empty.") + + for steps in steps_list: + if steps < 0: + raise ValueError(f"List of steps must be non-negative, got {steps_list}") + + if np.isscalar(orders): + rdp = _compute_rdp_tree(noise_multiplier, steps_list, max_participation, + orders) + else: + rdp = np.array([ + _compute_rdp_tree(noise_multiplier, steps_list, max_participation, + alpha) for alpha in orders + ]) + + return rdp + + def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders): """Compute RDP of Gaussian Mechanism using sampling without replacement. diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py index 3a5529f..33c51fd 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py @@ -21,7 +21,6 @@ from __future__ import print_function import math import sys -from absl.testing import absltest from absl.testing import parameterized from mpmath import exp from mpmath import inf @@ -265,5 +264,64 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase): self.assertLessEqual(delta, delta1 + 1e-300) +class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): + + @parameterized.named_parameters(('eps20', 1.13, 19.74), ('eps2', 8.83, 2.04)) + def test_compute_eps_tree(self, noise_multiplier, eps): + orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) + # This tests is based on the StackOverflow setting in "Practical and + # Private (Deep) Learning without Sampling or Shuffling". The calculated + # epsilon could be better as the method in this package keeps improving. + steps_list, target_delta, max_participation = [1600], 1e-6, 1 + rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, + max_participation, orders) + new_eps = rdp_accountant.get_privacy_spent( + orders, rdp, target_delta=target_delta)[0] + self.assertLess(new_eps, eps) + + @parameterized.named_parameters( + ('restart4_max2', [400] * 4, 2), + ('restart2_max1', [800] * 2, 1), + ('adaptive_max4', [10, 400, 400, 400, 390], 4), + ) + def test_compute_eps_tree_decreasing(self, steps_list, max_participation): + # Test privacy epsilon decreases with noise multiplier increasing when + # keeping other parameters the same. + orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) + target_delta = 1e-6 + prev_eps = rdp_accountant.compute_rdp_tree(0, steps_list, max_participation, + orders) + for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]: + rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, + max_participation, orders) + eps = rdp_accountant.get_privacy_spent( + orders, rdp, target_delta=target_delta)[0] + self.assertLess(eps, prev_eps) + + @parameterized.named_parameters( + ('negative_noise', -1, [3], 2, 1), + ('empty_steps', 1, [], 2, 1), + ('negative_steps', 1, [-3], 2, 1), + ('zero_participation', 1, [3], 0, 1), + ('negative_participation', 1, [3], -1, 1), + ) + def test_compute_rdp_tree_raise(self, noise_multiplier, steps_list, + max_participation, orders): + with self.assertRaisesRegex(ValueError, 'must be'): + rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list, + max_participation, orders) + + @parameterized.named_parameters( + ('t100n0.1', 100, 0.1), + ('t1000n0.01', 1000, 0.01), + ) + def test_no_tree_no_sampling(self, total_steps, noise_multiplier): + orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) + tree_rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, + [1] * total_steps, 1, orders) + rdp = rdp_accountant.compute_rdp(1., noise_multiplier, total_steps, orders) + self.assertAllClose(tree_rdp, rdp, rtol=1e-12) + + if __name__ == '__main__': - absltest.main() + tf.test.main()