zCDP to epsilon for tree aggregation accounting.

PiperOrigin-RevId: 539706770
This commit is contained in:
Zheng Xu 2023-06-12 11:08:39 -07:00 committed by A. Unique TensorFlower
parent 18c43b351b
commit a4bdb05b62
3 changed files with 39 additions and 1 deletions

View file

@ -84,6 +84,7 @@ py_library(
name = "tree_aggregation_accountant",
srcs = ["tree_aggregation_accountant.py"],
srcs_version = "PY3",
deps = ["@com_google_differential_py//dp_accounting:accounting"],
)
py_test(

View file

@ -69,8 +69,9 @@ appearance of a same sample. For `target_delta`, the estimated epsilon is:
import functools
import math
from typing import Collection, Union
from typing import Collection, Optional, Union
import dp_accounting
import numpy as np
@ -376,3 +377,26 @@ def compute_zcdp_single_tree(
sum_sensitivity_square = _max_tree_sensitivity_square_sum(
max_participation, min_separation, total_steps)
return _compute_gaussian_zcdp(noise_multiplier, sum_sensitivity_square)
def _gaussian_zcdp_to_epsilon(
zcdp: float,
target_delta: float = 1e-10,
accountant: Optional[dp_accounting.PrivacyAccountant] = None,
) -> float:
"""Transforms zCDP of Gaussian Mechanism to (epsilon, delta)-DP.
Args:
zcdp: Input zCDP value.
target_delta: Specified target delta for (epsilon, delta)-DP.
accountant: Defaults to PLD accounting. Other options including RDP, i.e.,
dp_accounting.rdp.RdpAccountant()
Returns:
Epsilon under given delata for (epsilon, delta)-DP.
"""
if accountant is None:
accountant = dp_accounting.pld.PLDAccountant()
noise_multiplier = 1.0 / (zcdp * 2) ** 0.5
accountant.compose(dp_accounting.GaussianDpEvent(noise_multiplier), 1)
return accountant.get_epsilon(target_delta)

View file

@ -187,6 +187,19 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
tree_aggregation_accountant._compute_gaussian_zcdp(
sigma, sum_sensitivity_square))
def test_gaussian_zcdp_to_epsilon(self):
# The example below is reported in
# https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
# Uses updated default RDP order (i.e., orders=None) can achieve better
# guarantees. Uses PLD accounting (dp_accounting.pld.PLDAccountant) can
# usually be tigher than RDP.
zcdp = 0.81
orders = [1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64))
eps = tree_aggregation_accountant._gaussian_zcdp_to_epsilon(
zcdp, accountant=dp_accounting.rdp.RdpAccountant(orders)
)
self.assertNear(eps, 8.92, err=0.01)
if __name__ == '__main__':
tf.test.main()