Add head for multi-label estimators in TF estimator framework.

PiperOrigin-RevId: 327048185
This commit is contained in:
Steve Chien 2020-08-17 10:28:16 -07:00 committed by A. Unique TensorFlower
parent d939b22463
commit a69b013390
4 changed files with 290 additions and 0 deletions

View file

@ -37,6 +37,18 @@ py_library(
], ],
) )
py_library(
name = "multi_label_head",
srcs = [
"multi_label_head.py",
],
deps = [
"//third_party/py/tensorflow",
"//third_party/tensorflow/python:keras_lib", # TODO(b/163395075): Remove when fixed.
"//third_party/tensorflow_estimator",
],
)
py_library( py_library(
name = "dnn", name = "dnn",
srcs = [ srcs = [
@ -85,6 +97,19 @@ py_test(
], ],
) )
py_test(
name = "multi_label_head_test",
timeout = "long",
srcs = ["multi_label_head_test.py"],
python_version = "PY3",
deps = [
":multi_label_head",
":test_utils",
"//third_party/py/tensorflow",
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
],
)
py_test( py_test(
name = "dnn_test", name = "dnn_test",
timeout = "long", timeout = "long",

View file

@ -0,0 +1,152 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multiclass head for Estimator that allow integration with TF Privacy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras.utils import losses_utils # pylint: disable=g-direct-tensorflow-import
from tensorflow_estimator.python.estimator import model_fn
from tensorflow_estimator.python.estimator.canned import prediction_keys
from tensorflow_estimator.python.estimator.export import export_output
from tensorflow_estimator.python.estimator.head import base_head
from tensorflow_estimator.python.estimator.mode_keys import ModeKeys
class DPMultiLabelHead(tf.estimator.MultiLabelHead):
"""Creates a TF Privacy-enabled version of MultiLabelHead."""
def __init__(self,
n_classes,
weight_column=None,
thresholds=None,
label_vocabulary=None,
loss_reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
loss_fn=None,
classes_for_class_based_metrics=None,
name=None):
if loss_reduction == tf.keras.losses.Reduction.NONE:
loss_reduction = tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE
super(DPMultiLabelHead, self).__init__(
n_classes=n_classes,
weight_column=weight_column,
thresholds=thresholds,
label_vocabulary=label_vocabulary,
loss_reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
loss_fn=loss_fn,
classes_for_class_based_metrics=classes_for_class_based_metrics,
name=name)
def loss(self,
labels,
logits,
features=None,
mode=None,
regularization_losses=None):
"""Returns regularized training loss. See `base_head.Head` for details."""
del mode # Unused for this head.
with tf.compat.v1.name_scope(
'losses', values=(logits, labels, regularization_losses, features)):
logits = base_head.check_logits_final_dim(logits, self.logits_dimension)
labels = self._processed_labels(logits, labels)
unweighted_loss, weights = self._unweighted_loss_and_weights(
logits, labels, features)
vector_training_loss = losses_utils.compute_weighted_loss(
unweighted_loss,
sample_weight=weights,
reduction=tf.keras.losses.Reduction.NONE)
regularization_loss = tf.math.add_n(
regularization_losses) if regularization_losses is not None else None
vector_regularized_training_loss = (
tf.add(vector_training_loss, regularization_loss)
if regularization_loss is not None else vector_training_loss)
return vector_regularized_training_loss
def _create_tpu_estimator_spec(self,
features,
mode,
logits,
labels=None,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularization_losses=None):
"""See superclass for description."""
with tf.compat.v1.name_scope(self._name, 'head'):
# Predict.
pred_keys = prediction_keys.PredictionKeys
predictions = self.predictions(logits)
if mode == ModeKeys.PREDICT:
probabilities = predictions[pred_keys.PROBABILITIES]
classifier_output = base_head.classification_output(
scores=probabilities,
n_classes=self._n_classes,
label_vocabulary=self._label_vocabulary)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
base_head.DEFAULT_SERVING_KEY:
classifier_output,
base_head.CLASSIFY_SERVING_KEY:
classifier_output,
base_head.PREDICT_SERVING_KEY:
export_output.PredictOutput(predictions)
})
regularized_training_loss = self.loss(
logits=logits,
labels=labels,
features=features,
mode=mode,
regularization_losses=regularization_losses)
scalar_loss = tf.reduce_mean(regularized_training_loss)
# Eval.
if mode == ModeKeys.EVAL:
eval_metrics = self.metrics(regularization_losses=regularization_losses)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.EVAL,
predictions=predictions,
loss=scalar_loss,
eval_metrics=base_head.create_eval_metrics_tuple(
self.update_metrics, {
'eval_metrics': eval_metrics,
'features': features,
'logits': logits,
'labels': labels,
'regularization_losses': regularization_losses
}))
# Train.
train_op = base_head.create_estimator_spec_train_op(
head_name=self._name,
optimizer=optimizer,
train_op_fn=train_op_fn,
update_ops=update_ops,
trainable_variables=trainable_variables,
regularized_training_loss=regularized_training_loss,
loss_reduction=self._loss_reduction)
# Create summary.
base_head.create_estimator_spec_summary(
regularized_training_loss=scalar_loss,
regularization_losses=regularization_losses,
summary_key_fn=self._summary_key)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.TRAIN,
predictions=predictions,
loss=scalar_loss,
train_op=train_op)

View file

@ -0,0 +1,89 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for DP-enabled binary class heads."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.estimators import multi_label_head
from tensorflow_privacy.privacy.estimators import test_utils
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
class DPMultiLabelHeadTest(tf.test.TestCase):
"""Tests for DP-enabled multilabel heads."""
def testLoss(self):
"""Tests loss() returns per-example losses."""
head = multi_label_head.DPMultiLabelHead(3)
features = {'feature_a': np.full((4), 1.0)}
labels = np.array([[0, 1, 1], [1, 1, 0], [0, 1, 0], [1, 1, 1]])
logits = np.array([[2.0, 1.5, 4.1], [2.0, 1.5, 4.1], [2.0, 1.5, 4.1],
[2.0, 1.5, 4.1]])
actual_loss = head.loss(labels, logits, features)
expected_loss = tf.reduce_mean(
tf.compat.v1.losses.sigmoid_cross_entropy(
multi_class_labels=labels,
logits=logits,
reduction=tf.keras.losses.Reduction.NONE),
axis=-1,
keepdims=True)
if tf.executing_eagerly():
self.assertEqual(actual_loss.shape, [4, 1])
self.assertAllClose(actual_loss, expected_loss)
return
self.assertEqual(actual_loss.shape, [4, 1])
self.assertAllClose(expected_loss, self.evaluate(actual_loss))
def testCreateTPUEstimatorSpec(self):
"""Tests that an Estimator built with this head works."""
train_features, train_labels = test_utils.make_multilabel_input_data(256)
feature_columns = []
for key in train_features:
feature_columns.append(tf.feature_column.numeric_column(key=key))
head = multi_label_head.DPMultiLabelHead(3)
optimizer = DPKerasSGDOptimizer(
learning_rate=0.5,
l2_norm_clip=1.0,
noise_multiplier=0.0,
num_microbatches=2)
model_fn = test_utils.make_model_fn(head, optimizer, feature_columns)
classifier = tf.estimator.Estimator(model_fn=model_fn)
classifier.train(
input_fn=test_utils.make_input_fn(train_features, train_labels, True),
steps=4)
test_features, test_labels = test_utils.make_multilabel_input_data(64)
classifier.evaluate(
input_fn=test_utils.make_input_fn(test_features, test_labels, False),
steps=4)
predict_features, predict_labels = test_utils.make_multilabel_input_data(64)
classifier.predict(
input_fn=test_utils.make_input_fn(predict_features, predict_labels,
False))
if __name__ == '__main__':
tf.test.main()

View file

@ -54,6 +54,30 @@ def make_input_data(size, classes):
return features, labels return features, labels
def make_multilabel_input_data(size):
"""Create raw input data for testing."""
feature_a = np.random.normal(4, 1, (size))
feature_b = np.random.normal(5, 0.7, (size))
feature_c = np.random.normal(6, 2, (size))
noise_a = np.random.normal(0, 1, (size))
noise_b = np.random.normal(0, 1, (size))
noise_c = np.random.normal(0, 1, (size))
features = {
'feature_a': feature_a,
'feature_b': feature_b,
'feature_c': feature_c,
}
def label_fn(a, b, c):
return [int(a > 4), int(b > 5), int(c > 6)]
labels = list(
map(label_fn, feature_a + noise_a, feature_b + noise_b,
feature_c + noise_c))
return features, labels
def make_input_fn(features, labels, training, batch_size=16): def make_input_fn(features, labels, training, batch_size=16):
"""Returns an input function suitable for an estimator.""" """Returns an input function suitable for an estimator."""