- Create the Overview page for TF Privacy
PiperOrigin-RevId: 373871593
This commit is contained in:
parent
452873e9ce
commit
aaf4c252a0
1 changed files with 62 additions and 24 deletions
|
@ -1,50 +1,88 @@
|
|||
# TODO(b/181782485): Switch to the main book for launch - /responsible_ai/_book.yaml
|
||||
book_path: /responsible_ai/privacy/_book.yaml
|
||||
project_path: /responsible_ai/_project.yaml
|
||||
title: TensorFlow Privacy
|
||||
description: >
|
||||
Page description used for search and social.
|
||||
Overview of TensorFlow Privacy library.
|
||||
landing_page:
|
||||
nav: left
|
||||
custom_css_path: /site-assets/css/style.css
|
||||
rows:
|
||||
- heading: TensorFlow Privacy does something great.
|
||||
- heading: Privacy in Machine Learning
|
||||
items:
|
||||
- classname: devsite-landing-row-50
|
||||
description: >
|
||||
This is a description of PROJECT_NAME. Lorem ipsum dolor sit amet,
|
||||
consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
|
||||
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
|
||||
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
|
||||
<p>
|
||||
Preventing ML models from exposing potentially sensitive information is a critical part of
|
||||
using AI responsibly. To that end, <i>differentially private stochastic gradient descent
|
||||
(DP-SGD)</i> is a modification to the standard stochastic gradient descent (SGD) algorithm
|
||||
in machine learning. </p>
|
||||
<p>Models trained with DP-SGD have provable differential privacy (DP)
|
||||
guarantees, mitigating the risk of exposing sensitive training data. Intuitively, a model
|
||||
trained with differential privacy should not be affected by any single training example in
|
||||
its data set. DP-SGD techniques can also be used in federated learning to provide user-level
|
||||
differential privacy. You can learn more about differentially private deep learning in <a
|
||||
href="https://arxiv.org/pdf/1607.00133.pdf">the original paper</a>.
|
||||
</p>
|
||||
|
||||
code_block: |
|
||||
- code_block: |
|
||||
<pre class = "prettyprint">
|
||||
import tensorflow as tf
|
||||
import PROJECT_NAME
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras
|
||||
|
||||
# This is a short code snippet that shows off your project.
|
||||
# Launch a Colab notebook to run this example.
|
||||
print("Hello, PROJECT_NAME")
|
||||
</pre>
|
||||
{% dynamic if request.tld != 'cn' %}
|
||||
<a class="colab-button" target="_blank" href="https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/_index.ipynb">Run in a <span>Notebook</span></a>
|
||||
{% dynamic endif %}
|
||||
# Select your differentially private optimizer
|
||||
optimizer = tensorflow_privacy.DPKerasSGDOptimizer(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=learning_rate)
|
||||
|
||||
# Select your loss function
|
||||
loss = tf.keras.losses.CategoricalCrossentropy(
|
||||
from_logits=True, reduction=tf.losses.Reduction.NONE)
|
||||
|
||||
# Compile your model
|
||||
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
||||
|
||||
# Fit your model
|
||||
model.fit(train_data, train_labels,
|
||||
epochs=epochs,
|
||||
validation_data=(test_data, test_labels),
|
||||
batch_size=batch_size)
|
||||
</pre>
|
||||
|
||||
- classname: devsite-landing-row-100
|
||||
- heading: TensorFlow Privacy
|
||||
options:
|
||||
- description-100
|
||||
items:
|
||||
- classname: devsite-landing-row-100
|
||||
description: >
|
||||
<p>Tensorflow Privacy (TF Privacy) is an open source library developed by teams in Google
|
||||
Research. The library includes implementations of commonly used TensorFlow Optimizers for
|
||||
training ML models with DP. The goal is to enable ML practitioners using standard Tensorflow
|
||||
APIs to train privacy-preserving models by changing only a few lines of code.</p>
|
||||
<p> The differentially private Optimizers can be used in conjunction with high-level APIs
|
||||
that use the Optimizer class, especially Keras. Additionally, you can find differentially
|
||||
private implementations of some Keras models. All of the Optimizers and models can be found
|
||||
in the <a href="./privacy/api">API Documentation</a>.</p>
|
||||
|
||||
- classname: devsite-landing-row-cards
|
||||
items:
|
||||
- heading: "Introducing PROJECT_NAME"
|
||||
- heading: "Introducing TensorFlow Privacy"
|
||||
image_path: /resources/images/tf-logo-card-16x9.png
|
||||
path: https://blog.tensorflow.org
|
||||
path: https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
|
||||
buttons:
|
||||
- label: "Read on TensorFlow blog"
|
||||
path: https://blog.tensorflow.org
|
||||
- heading: "PROJECT_NAME video"
|
||||
youtube_id: 3d34Hkf7KXA
|
||||
path: https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
|
||||
- heading: "TensorFlow Privacy at TF Dev Summit 2020"
|
||||
youtube_id: UEECKh6PLhI
|
||||
buttons:
|
||||
- label: Watch the video
|
||||
path: https://www.youtube.com/watch?v=3d34Hkf7KXA
|
||||
- heading: "PROJECT_NAME on GitHub"
|
||||
path: https://www.youtube.com/watch?v=UEECKh6PLhI
|
||||
- heading: "TensorFlow Privacy on GitHub"
|
||||
image_path: /resources/images/github-card-16x9.png
|
||||
path: https://github.com/tensorflow/PROJECT_NAME
|
||||
path: https://github.com/tensorflow/privacy
|
||||
buttons:
|
||||
- label: "View on GitHub"
|
||||
path: https://github.com/tensorflow/PROJECT_NAME
|
||||
path: https://github.com/tensorflow/privacy
|
||||
|
|
Loading…
Reference in a new issue