Internal change.
PiperOrigin-RevId: 335385162
This commit is contained in:
parent
9a56402c0d
commit
ab1090717c
1 changed files with 89 additions and 81 deletions
|
@ -20,6 +20,7 @@ This is using a toy model based on classifying four spacial clusters of data.
|
|||
import os
|
||||
import tempfile
|
||||
|
||||
from absl import app
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
@ -117,99 +118,106 @@ def crossentropy(true_labels, predictions):
|
|||
keras.backend.variable(predictions)))
|
||||
|
||||
|
||||
epoch_results = []
|
||||
def main(unused_argv):
|
||||
epoch_results = []
|
||||
|
||||
num_epochs = 2
|
||||
models = {
|
||||
"two layer model": two_layer_model,
|
||||
"three layer model": three_layer_model,
|
||||
}
|
||||
for model_name in models:
|
||||
# Incrementally train the model and store privacy metrics every num_epochs.
|
||||
for i in range(1, 6):
|
||||
models[model_name].fit(
|
||||
training_features,
|
||||
to_categorical(training_labels, num_clusters),
|
||||
validation_data=(test_features, to_categorical(test_labels,
|
||||
num_clusters)),
|
||||
batch_size=64,
|
||||
epochs=num_epochs,
|
||||
shuffle=True)
|
||||
num_epochs = 2
|
||||
models = {
|
||||
"two layer model": two_layer_model,
|
||||
"three layer model": three_layer_model,
|
||||
}
|
||||
for model_name in models:
|
||||
# Incrementally train the model and store privacy metrics every num_epochs.
|
||||
for i in range(1, 6):
|
||||
models[model_name].fit(
|
||||
training_features,
|
||||
to_categorical(training_labels, num_clusters),
|
||||
validation_data=(test_features,
|
||||
to_categorical(test_labels, num_clusters)),
|
||||
batch_size=64,
|
||||
epochs=num_epochs,
|
||||
shuffle=True)
|
||||
|
||||
training_pred = models[model_name].predict(training_features)
|
||||
test_pred = models[model_name].predict(test_features)
|
||||
training_pred = models[model_name].predict(training_features)
|
||||
test_pred = models[model_name].predict(test_features)
|
||||
|
||||
# Add metadata to generate a privacy report.
|
||||
privacy_report_metadata = PrivacyReportMetadata(
|
||||
accuracy_train=metrics.accuracy_score(training_labels,
|
||||
np.argmax(training_pred, axis=1)),
|
||||
accuracy_test=metrics.accuracy_score(test_labels,
|
||||
np.argmax(test_pred, axis=1)),
|
||||
epoch_num=num_epochs * i,
|
||||
model_variant_label=model_name)
|
||||
# Add metadata to generate a privacy report.
|
||||
privacy_report_metadata = PrivacyReportMetadata(
|
||||
accuracy_train=metrics.accuracy_score(
|
||||
training_labels, np.argmax(training_pred, axis=1)),
|
||||
accuracy_test=metrics.accuracy_score(test_labels,
|
||||
np.argmax(test_pred, axis=1)),
|
||||
epoch_num=num_epochs * i,
|
||||
model_variant_label=model_name)
|
||||
|
||||
attack_results = mia.run_attacks(
|
||||
AttackInputData(
|
||||
labels_train=training_labels,
|
||||
labels_test=test_labels,
|
||||
probs_train=training_pred,
|
||||
probs_test=test_pred,
|
||||
loss_train=crossentropy(training_labels, training_pred),
|
||||
loss_test=crossentropy(test_labels, test_pred)),
|
||||
SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=(AttackType.THRESHOLD_ATTACK,
|
||||
AttackType.LOGISTIC_REGRESSION),
|
||||
privacy_report_metadata=privacy_report_metadata)
|
||||
epoch_results.append(attack_results)
|
||||
attack_results = mia.run_attacks(
|
||||
AttackInputData(
|
||||
labels_train=training_labels,
|
||||
labels_test=test_labels,
|
||||
probs_train=training_pred,
|
||||
probs_test=test_pred,
|
||||
loss_train=crossentropy(training_labels, training_pred),
|
||||
loss_test=crossentropy(test_labels, test_pred)),
|
||||
SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=(AttackType.THRESHOLD_ATTACK,
|
||||
AttackType.LOGISTIC_REGRESSION),
|
||||
privacy_report_metadata=privacy_report_metadata)
|
||||
epoch_results.append(attack_results)
|
||||
|
||||
# Generate privacy reports
|
||||
epoch_figure = privacy_report.plot_by_epochs(
|
||||
epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
|
||||
epoch_figure.show()
|
||||
privacy_utility_figure = privacy_report.plot_privacy_vs_accuracy_single_model(
|
||||
epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
|
||||
privacy_utility_figure.show()
|
||||
# Generate privacy reports
|
||||
epoch_figure = privacy_report.plot_by_epochs(
|
||||
epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
|
||||
epoch_figure.show()
|
||||
privacy_utility_figure = privacy_report.plot_privacy_vs_accuracy_single_model(
|
||||
epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
|
||||
privacy_utility_figure.show()
|
||||
|
||||
# Example of saving the results to the file and loading them back.
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
filepath = os.path.join(tmpdirname, "results.pickle")
|
||||
attack_results.save(filepath)
|
||||
loaded_results = AttackResults.load(filepath)
|
||||
# Example of saving the results to the file and loading them back.
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
filepath = os.path.join(tmpdirname, "results.pickle")
|
||||
attack_results.save(filepath)
|
||||
loaded_results = AttackResults.load(filepath)
|
||||
print(loaded_results.summary(by_slices=False))
|
||||
|
||||
# Print attack metrics
|
||||
for attack_result in attack_results.single_attack_results:
|
||||
print("Slice: %s" % attack_result.slice_spec)
|
||||
print("Attack type: %s" % attack_result.attack_type)
|
||||
print("AUC: %.2f" % attack_result.roc_curve.get_auc())
|
||||
# Print attack metrics
|
||||
for attack_result in attack_results.single_attack_results:
|
||||
print("Slice: %s" % attack_result.slice_spec)
|
||||
print("Attack type: %s" % attack_result.attack_type)
|
||||
print("AUC: %.2f" % attack_result.roc_curve.get_auc())
|
||||
|
||||
print("Attacker advantage: %.2f\n" %
|
||||
attack_result.roc_curve.get_attacker_advantage())
|
||||
print("Attacker advantage: %.2f\n" %
|
||||
attack_result.roc_curve.get_attacker_advantage())
|
||||
|
||||
max_auc_attacker = attack_results.get_result_with_max_auc()
|
||||
print("Attack type with max AUC: %s, AUC of %.2f" %
|
||||
(max_auc_attacker.attack_type, max_auc_attacker.roc_curve.get_auc()))
|
||||
max_auc_attacker = attack_results.get_result_with_max_auc()
|
||||
print("Attack type with max AUC: %s, AUC of %.2f" %
|
||||
(max_auc_attacker.attack_type, max_auc_attacker.roc_curve.get_auc()))
|
||||
|
||||
max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage()
|
||||
print("Attack type with max advantage: %s, Attacker advantage of %.2f" %
|
||||
(max_advantage_attacker.attack_type,
|
||||
max_advantage_attacker.roc_curve.get_attacker_advantage()))
|
||||
max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage(
|
||||
)
|
||||
print("Attack type with max advantage: %s, Attacker advantage of %.2f" %
|
||||
(max_advantage_attacker.attack_type,
|
||||
max_advantage_attacker.roc_curve.get_attacker_advantage()))
|
||||
|
||||
# Print summary
|
||||
print("Summary without slices: \n")
|
||||
print(attack_results.summary(by_slices=False))
|
||||
# Print summary
|
||||
print("Summary without slices: \n")
|
||||
print(attack_results.summary(by_slices=False))
|
||||
|
||||
print("Summary by slices: \n")
|
||||
print(attack_results.summary(by_slices=True))
|
||||
print("Summary by slices: \n")
|
||||
print(attack_results.summary(by_slices=True))
|
||||
|
||||
# Print pandas data frame
|
||||
print("Pandas frame: \n")
|
||||
pd.set_option("display.max_rows", None, "display.max_columns", None)
|
||||
print(attack_results.calculate_pd_dataframe())
|
||||
# Print pandas data frame
|
||||
print("Pandas frame: \n")
|
||||
pd.set_option("display.max_rows", None, "display.max_columns", None)
|
||||
print(attack_results.calculate_pd_dataframe())
|
||||
|
||||
# Example of ROC curve plotting.
|
||||
figure = plotting.plot_roc_curve(
|
||||
attack_results.single_attack_results[0].roc_curve)
|
||||
plt.show()
|
||||
# Example of ROC curve plotting.
|
||||
figure = plotting.plot_roc_curve(
|
||||
attack_results.single_attack_results[0].roc_curve)
|
||||
figure.show()
|
||||
plt.show()
|
||||
|
||||
# For saving a figure into a file:
|
||||
# plotting.save_plot(figure, <file_path>)
|
||||
# For saving a figure into a file:
|
||||
# plotting.save_plot(figure, <file_path>)
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run(main)
|
||||
|
|
Loading…
Reference in a new issue