Check batch_size % microbatches = 0 and calculate privacy budget only when dpsgd is set.
PiperOrigin-RevId: 244949900
This commit is contained in:
parent
a3e03f773e
commit
ab466b156c
2 changed files with 20 additions and 12 deletions
|
@ -170,7 +170,7 @@ def load_mnist():
|
||||||
|
|
||||||
def main(unused_argv):
|
def main(unused_argv):
|
||||||
tf.logging.set_verbosity(tf.logging.INFO)
|
tf.logging.set_verbosity(tf.logging.INFO)
|
||||||
if FLAGS.batch_size % FLAGS.microbatches != 0:
|
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
||||||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||||
|
|
||||||
# Load training and test data.
|
# Load training and test data.
|
||||||
|
|
|
@ -46,6 +46,20 @@ tf.flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||||
FLAGS = tf.flags.FLAGS
|
FLAGS = tf.flags.FLAGS
|
||||||
|
|
||||||
|
|
||||||
|
def compute_epsilon(steps):
|
||||||
|
"""Computes epsilon value for given hyperparameters."""
|
||||||
|
if FLAGS.noise_multiplier == 0.0:
|
||||||
|
return float('inf')
|
||||||
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||||
|
sampling_probability = FLAGS.batch_size / 60000
|
||||||
|
rdp = compute_rdp(q=sampling_probability,
|
||||||
|
noise_multiplier=FLAGS.noise_multiplier,
|
||||||
|
steps=steps,
|
||||||
|
orders=orders)
|
||||||
|
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||||
|
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||||
|
|
||||||
|
|
||||||
def load_mnist():
|
def load_mnist():
|
||||||
"""Loads MNIST and preprocesses to combine training and validation data."""
|
"""Loads MNIST and preprocesses to combine training and validation data."""
|
||||||
train, test = tf.keras.datasets.mnist.load_data()
|
train, test = tf.keras.datasets.mnist.load_data()
|
||||||
|
@ -74,7 +88,7 @@ def load_mnist():
|
||||||
|
|
||||||
def main(unused_argv):
|
def main(unused_argv):
|
||||||
tf.logging.set_verbosity(tf.logging.INFO)
|
tf.logging.set_verbosity(tf.logging.INFO)
|
||||||
if FLAGS.batch_size % FLAGS.microbatches != 0:
|
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
||||||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||||
|
|
||||||
# Load training and test data.
|
# Load training and test data.
|
||||||
|
@ -125,17 +139,11 @@ def main(unused_argv):
|
||||||
batch_size=FLAGS.batch_size)
|
batch_size=FLAGS.batch_size)
|
||||||
|
|
||||||
# Compute the privacy budget expended.
|
# Compute the privacy budget expended.
|
||||||
if FLAGS.noise_multiplier == 0.0:
|
if FLAGS.dpsgd:
|
||||||
|
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
|
||||||
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||||||
|
else:
|
||||||
print('Trained with vanilla non-private SGD optimizer')
|
print('Trained with vanilla non-private SGD optimizer')
|
||||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
|
||||||
sampling_probability = FLAGS.batch_size / 60000
|
|
||||||
rdp = compute_rdp(q=sampling_probability,
|
|
||||||
noise_multiplier=FLAGS.noise_multiplier,
|
|
||||||
steps=(FLAGS.epochs * 60000 // FLAGS.batch_size),
|
|
||||||
orders=orders)
|
|
||||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
|
||||||
eps = get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
|
||||||
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
tf.app.run()
|
tf.app.run()
|
||||||
|
|
Loading…
Reference in a new issue