Merge pull request #147 from TheSalon:master

PiperOrigin-RevId: 351680116
This commit is contained in:
A. Unique TensorFlower 2021-01-13 15:42:04 -08:00
commit aed49d0087
4 changed files with 254 additions and 0 deletions

View file

@ -0,0 +1,15 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"])
py_library(
name = "dp_keras_model",
srcs = [
"dp_keras_model.py",
],
deps = [
"//third_party/py/tensorflow",
"//third_party/tensorflow/compiler/jit:xla_cpu_jit",
"//third_party/tensorflow/compiler/jit:xla_gpu_jit",
],
)

View file

@ -0,0 +1,94 @@
# Copyright 2021, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras Model for vectorized dpsgd with XLA acceleration."""
import tensorflow as tf
def make_dp_model_class(cls):
"""Given a subclass of `tf.keras.Model`, returns a DP-SGD version of it."""
class DPModelClass(cls):
"""A DP version of `cls`, which should be a subclass of `tf.keras.Model`."""
def __init__(
self,
l2_norm_clip,
noise_multiplier,
use_xla=True,
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
**kwargs):
"""Initializes the DPModelClass.
Args:
l2_norm_clip: Clipping norm (max L2 norm of per microbatch
gradients).
noise_multiplier: Ratio of the standard deviation to the clipping
norm.
use_xla: If True, compiles train_step to XLA.
"""
super(DPModelClass, self).__init__(*args, **kwargs)
self._l2_norm_clip = l2_norm_clip
self._noise_multiplier = noise_multiplier
if use_xla:
self.train_step = tf.function(
self.train_step, experimental_compile=True)
def _process_per_example_grads(self, grads):
grads_flat = tf.nest.flatten(grads)
squared_l2_norms = [
tf.reduce_sum(input_tensor=tf.square(g)) for g in grads_flat
]
global_norm = tf.sqrt(tf.add_n(squared_l2_norms))
div = tf.maximum(global_norm / self._l2_norm_clip, 1.)
clipped_flat = [g / div for g in grads_flat]
return tf.nest.pack_sequence_as(grads, clipped_flat)
def _reduce_per_example_grads(self, stacked_grads):
summed_grads = tf.reduce_sum(input_tensor=stacked_grads, axis=0)
noise_stddev = self._l2_norm_clip * self._noise_multiplier
noise = tf.random.normal(
tf.shape(input=summed_grads), stddev=noise_stddev)
noised_grads = summed_grads + noise
return noised_grads / tf.cast(stacked_grads.shape[0], noised_grads.dtype)
def _compute_per_example_grads(self, data):
x, y = data
with tf.GradientTape() as tape:
# We need to add the extra dimension to x and y because model
# expects batched input.
y_pred = self(x[None], training=True)
loss = self.compiled_loss(
y[None], y_pred, regularization_losses=self.losses)
grads_list = tape.gradient(loss, self.trainable_variables)
clipped_grads = self._process_per_example_grads(grads_list)
return tf.squeeze(y_pred, axis=0), loss, clipped_grads
def train_step(self, data):
_, y = data
y_pred, _, per_eg_grads = tf.vectorized_map(
self._compute_per_example_grads, data)
grads = tf.nest.map_structure(self._reduce_per_example_grads,
per_eg_grads)
self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
self.compiled_metrics.update_state(y, y_pred)
return {m.name: m.result() for m in self.metrics}
return DPModelClass
DPModel = make_dp_model_class(tf.keras.Model)
DPSequential = make_dp_model_class(tf.keras.Sequential)

View file

@ -0,0 +1,145 @@
# Copyright 2021, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
def compute_epsilon(steps):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp(
q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier,
steps=steps,
orders=orders)
# Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
def load_mnist():
"""Loads MNIST and preprocesses to combine training and validation data."""
train, test = tf.keras.datasets.mnist.load_data()
train_data, train_labels = train
test_data, test_labels = test
train_data = np.array(train_data, dtype=np.float32) / 255
test_data = np.array(test_data, dtype=np.float32) / 255
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
train_labels = np.array(train_labels, dtype=np.int32)
test_labels = np.array(test_labels, dtype=np.int32)
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
assert train_data.min() == 0.
assert train_data.max() == 1.
assert test_data.min() == 0.
assert test_data.max() == 1.
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
logging.set_verbosity(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist()
# Define a sequential Keras model
layers = [
tf.keras.layers.Conv2D(
16,
8,
strides=2,
padding='same',
activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(
32, 4, strides=2, padding='valid', activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
]
if FLAGS.dpsgd:
model = DPSequential(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
layers=layers)
else:
model = tf.keras.Sequential(layers=layers)
optimizer = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
# Train model with Keras
model.fit(
train_data,
train_labels,
epochs=FLAGS.epochs,
validation_data=(test_data, test_labels),
batch_size=FLAGS.batch_size)
# Compute the privacy budget expended.
if FLAGS.dpsgd:
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)