Add new top-level directory to GitHub repo, and add __init__.py file at top level. This makes the structure more consistent with other repos in the Google Tensorflow ecosystem.

PiperOrigin-RevId: 273803458
This commit is contained in:
Steve Chien 2019-10-09 13:01:28 -07:00 committed by Steve Chien
parent 313edfc80c
commit b125e3a686
2 changed files with 4 additions and 67 deletions

View file

@ -1,21 +1,14 @@
package(default_visibility = ["//visibility:public"]) package(default_visibility = ["//visibility:public"])
licenses(["notice"]) # Apache 2.0 licenses(["notice"])
exports_files(["LICENSE"]) exports_files(["LICENSE"])
# This is here for backwards compatibility. New BUILD rules should depend on
# //third_party/py/tensorflow_privacy:privacy directly.
py_library( py_library(
name = "privacy", name = "privacy",
srcs = ["__init__.py"],
deps = [ deps = [
"//third_party/py/tensorflow_privacy/privacy/analysis:privacy_ledger", "//third_party/py/tensorflow_privacy",
"//third_party/py/tensorflow_privacy/privacy/analysis:rdp_accountant",
"//third_party/py/tensorflow_privacy/privacy/dp_query",
"//third_party/py/tensorflow_privacy/privacy/dp_query:gaussian_query",
"//third_party/py/tensorflow_privacy/privacy/dp_query:nested_query",
"//third_party/py/tensorflow_privacy/privacy/dp_query:no_privacy_query",
"//third_party/py/tensorflow_privacy/privacy/dp_query:normalized_query",
"//third_party/py/tensorflow_privacy/privacy/dp_query:quantile_adaptive_clip_sum_query",
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer",
], ],
) )

View file

@ -1,56 +0,0 @@
# Copyright 2019, The TensorFlow Privacy Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow Privacy library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
# pylint: disable=g-import-not-at-top
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
pass
else:
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import SampleEntry
from tensorflow_privacy.privacy.dp_query.dp_query import DPQuery
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianAverageQuery
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianSumQuery
from tensorflow_privacy.privacy.dp_query.nested_query import NestedQuery
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacySumQuery
from tensorflow_privacy.privacy.dp_query.normalized_query import NormalizedQuery
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
try:
from tensorflow_privacy.privacy.bolt_on.models import BoltOnModel
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexHuber
except ImportError:
print('module `bolt_on` was not found in this version of TF Privacy')