diff --git a/tensorflow_privacy/privacy/analysis/BUILD b/tensorflow_privacy/privacy/analysis/BUILD index 940baee..39251e8 100644 --- a/tensorflow_privacy/privacy/analysis/BUILD +++ b/tensorflow_privacy/privacy/analysis/BUILD @@ -13,10 +13,7 @@ py_library( name = "compute_dp_sgd_privacy_lib", srcs = ["compute_dp_sgd_privacy_lib.py"], srcs_version = "PY3", - deps = [ - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", - ], + deps = ["@com_google_differential_py//python/dp_accounting"], ) py_binary( @@ -45,10 +42,7 @@ py_binary( py_library( name = "compute_noise_from_budget_lib", srcs = ["compute_noise_from_budget_lib.py"], - deps = [ - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", - ], + deps = ["@com_google_differential_py//python/dp_accounting"], ) py_test( @@ -67,11 +61,7 @@ py_library( srcs = ["rdp_accountant.py"], srcs_version = "PY3", visibility = ["//visibility:public"], - deps = [ - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting:privacy_accountant", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", - ], + deps = ["@com_google_differential_py//python/dp_accounting"], ) py_test( @@ -119,9 +109,7 @@ py_test( python_version = "PY3", srcs_version = "PY3", deps = [ - ":rdp_accountant", ":tree_aggregation_accountant", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) diff --git a/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_lib.py b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_lib.py index f884a32..14e75a4 100644 --- a/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_lib.py +++ b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_lib.py @@ -17,18 +17,18 @@ import math from absl import app - -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant +from com_google_differential_py.python.dp_accounting def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): """Compute and print results of DP-SGD analysis.""" - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps) + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent(q, + dp_accounting.GaussianDpEvent(sigma)), + steps) accountant.compose(event) diff --git a/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_lib.py b/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_lib.py index 18214af..4549e24 100644 --- a/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_lib.py +++ b/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_lib.py @@ -17,18 +17,18 @@ import math from absl import app +from com_google_differential_py.python.dp_accounting from scipy import optimize -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant - def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): """Compute and print results of DP-SGD analysis.""" - accountant = rdp_privacy_accountant.RdpAccountant(orders) - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps) + accountant = dp_accounting.rdp.RdpAccountant(orders) + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent(q, + dp_accounting.GaussianDpEvent(sigma)), + steps) accountant.compose(event) return accountant.get_epsilon_and_optimal_order(delta) diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant.py b/tensorflow_privacy/privacy/analysis/rdp_accountant.py index f35e442..1344869 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant.py @@ -41,12 +41,9 @@ The example code would be: eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta) """ +from com_google_differential_py.python.dp_accounting import numpy as np -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting import privacy_accountant -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant - def _compute_rdp_from_event(orders, event, count): """Computes RDP from a DpEvent using RdpAccountant. @@ -61,15 +58,14 @@ def _compute_rdp_from_event(orders, event, count): """ orders_vec = np.atleast_1d(orders) - if isinstance(event, dp_event.SampledWithoutReplacementDpEvent): - neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_ONE - elif isinstance(event, dp_event.SingleEpochTreeAggregationDpEvent): - neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_SPECIAL + if isinstance(event, dp_accounting.SampledWithoutReplacementDpEvent): + neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_ONE + elif isinstance(event, dp_accounting.SingleEpochTreeAggregationDpEvent): + neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_SPECIAL else: - neighboring_relation = privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE + neighboring_relation = dp_accounting.NeighboringRelation.ADD_OR_REMOVE_ONE - accountant = rdp_privacy_accountant.RdpAccountant(orders_vec, - neighboring_relation) + accountant = dp_accounting.rdp.RdpAccountant(orders_vec, neighboring_relation) accountant.compose(event, count) rdp = accountant._rdp # pylint: disable=protected-access @@ -96,8 +92,8 @@ def compute_rdp(q, noise_multiplier, steps, orders): Returns: The RDPs at all orders. Can be `np.inf`. """ - event = dp_event.PoissonSampledDpEvent( - q, dp_event.GaussianDpEvent(noise_multiplier)) + event = dp_accounting.PoissonSampledDpEvent( + q, dp_accounting.GaussianDpEvent(noise_multiplier)) return _compute_rdp_from_event(orders, event, steps) @@ -129,8 +125,8 @@ def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders): Returns: The RDPs at all orders, can be np.inf. """ - event = dp_event.SampledWithoutReplacementDpEvent( - 1, q, dp_event.GaussianDpEvent(noise_multiplier)) + event = dp_accounting.SampledWithoutReplacementDpEvent( + 1, q, dp_accounting.GaussianDpEvent(noise_multiplier)) return _compute_rdp_from_event(orders, event, steps) @@ -195,7 +191,7 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None): raise ValueError( "Exactly one out of eps and delta must be None. (None is).") - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) accountant._rdp = rdp # pylint: disable=protected-access if target_eps is not None: diff --git a/tensorflow_privacy/privacy/analysis/tree_aggregation_accountant_test.py b/tensorflow_privacy/privacy/analysis/tree_aggregation_accountant_test.py index e94551c..3403e0b 100644 --- a/tensorflow_privacy/privacy/analysis/tree_aggregation_accountant_test.py +++ b/tensorflow_privacy/privacy/analysis/tree_aggregation_accountant_test.py @@ -14,13 +14,10 @@ # ============================================================================== from absl.testing import parameterized +from com_google_differential_py.python.dp_accounting import tensorflow as tf - from tensorflow_privacy.privacy.analysis import tree_aggregation_accountant -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant - class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): @@ -33,8 +30,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): steps_list, target_delta = 1600, 1e-6 rdp = tree_aggregation_accountant.compute_rdp_tree_restart( noise_multiplier, steps_list, orders) - new_eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, - target_delta)[0] + new_eps = dp_accounting.rdp.compute_epsilon(orders, rdp, target_delta)[0] self.assertLess(new_eps, eps) @parameterized.named_parameters( @@ -67,7 +63,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]: rdp = tree_aggregation_accountant.compute_rdp_tree_restart( noise_multiplier, steps_list, orders) - eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, target_delta)[0] + eps = dp_accounting.rdp.compute_epsilon(orders, rdp, target_delta)[0] self.assertLess(eps, prev_eps) prev_eps = eps @@ -90,8 +86,9 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) tree_rdp = tree_aggregation_accountant.compute_rdp_tree_restart( noise_multiplier, [1] * total_steps, orders) - accountant = rdp_privacy_accountant.RdpAccountant(orders) - accountant.compose(dp_event.GaussianDpEvent(noise_multiplier), total_steps) + accountant = dp_accounting.rdp.RdpAccountant(orders) + accountant.compose( + dp_accounting.GaussianDpEvent(noise_multiplier), total_steps) rdp = accountant._rdp # pylint: disable=protected-access self.assertAllClose(tree_rdp, rdp, rtol=1e-12) diff --git a/tensorflow_privacy/privacy/dp_query/BUILD b/tensorflow_privacy/privacy/dp_query/BUILD index 0bbafd8..c385dde 100644 --- a/tensorflow_privacy/privacy/dp_query/BUILD +++ b/tensorflow_privacy/privacy/dp_query/BUILD @@ -36,7 +36,7 @@ py_library( deps = [ ":discrete_gaussian_utils", ":dp_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -59,7 +59,7 @@ py_library( deps = [ ":discrete_gaussian_utils", ":dp_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -82,7 +82,7 @@ py_library( deps = [ ":dp_query", ":normalized_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -103,7 +103,7 @@ py_library( srcs_version = "PY3", deps = [ ":dp_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -125,7 +125,7 @@ py_library( srcs_version = "PY3", deps = [ ":dp_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -167,7 +167,7 @@ py_library( srcs_version = "PY3", deps = [ ":dp_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -194,7 +194,7 @@ py_library( ":dp_query", ":gaussian_query", ":quantile_estimator_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -274,7 +274,7 @@ py_library( deps = [ ":dp_query", ":tree_aggregation", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -286,7 +286,7 @@ py_library( ":distributed_discrete_gaussian_query", ":dp_query", ":gaussian_query", - "@com_google_differential_py//python/dp_accounting:dp_event", + "@com_google_differential_py//python/dp_accounting", ], ) diff --git a/tensorflow_privacy/privacy/dp_query/discrete_gaussian_query.py b/tensorflow_privacy/privacy/dp_query/discrete_gaussian_query.py index b151b68..6870124 100644 --- a/tensorflow_privacy/privacy/dp_query/discrete_gaussian_query.py +++ b/tensorflow_privacy/privacy/dp_query/discrete_gaussian_query.py @@ -15,12 +15,11 @@ import collections +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils from tensorflow_privacy.privacy.dp_query import dp_query -from com_google_differential_py.python.dp_accounting import dp_event - class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): """Implements DPQuery for discrete Gaussian sum queries. @@ -84,5 +83,5 @@ class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): return tf.ensure_shape(noised_v, v.shape) result = tf.nest.map_structure(add_noise, sample_state) - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return result, global_state, event diff --git a/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py b/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py index 514f297..3b4e6b5 100644 --- a/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py +++ b/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py @@ -15,12 +15,11 @@ import collections +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils from tensorflow_privacy.privacy.dp_query import dp_query -from com_google_differential_py.python.dp_accounting import dp_event - class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): """Implements DPQuery for discrete distributed Gaussian sum queries. @@ -108,5 +107,5 @@ class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): def get_noised_result(self, sample_state, global_state): # Note that by directly returning the aggregate, this assumes that there # will not be missing local noise shares during execution. - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return sample_state, global_state, event diff --git a/tensorflow_privacy/privacy/dp_query/distributed_skellam_query.py b/tensorflow_privacy/privacy/dp_query/distributed_skellam_query.py index e721e82..971499a 100644 --- a/tensorflow_privacy/privacy/dp_query/distributed_skellam_query.py +++ b/tensorflow_privacy/privacy/dp_query/distributed_skellam_query.py @@ -15,12 +15,11 @@ import collections +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import normalized_query -from com_google_differential_py.python.dp_accounting import dp_event - class DistributedSkellamSumQuery(dp_query.SumAggregationDPQuery): """Implements DPQuery interface for discrete distributed sum queries. @@ -127,7 +126,7 @@ class DistributedSkellamSumQuery(dp_query.SumAggregationDPQuery): def get_noised_result(self, sample_state, global_state): """The noise was already added locally, therefore just continue.""" - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return sample_state, global_state, event diff --git a/tensorflow_privacy/privacy/dp_query/gaussian_query.py b/tensorflow_privacy/privacy/dp_query/gaussian_query.py index bc5c4ef..966fd72 100644 --- a/tensorflow_privacy/privacy/dp_query/gaussian_query.py +++ b/tensorflow_privacy/privacy/dp_query/gaussian_query.py @@ -16,11 +16,10 @@ import collections import distutils +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query -from com_google_differential_py.python.dp_accounting import dp_event - class GaussianSumQuery(dp_query.SumAggregationDPQuery): """Implements DPQuery interface for Gaussian sum queries. @@ -94,6 +93,6 @@ class GaussianSumQuery(dp_query.SumAggregationDPQuery): result = tf.nest.map_structure(add_noise, sample_state) noise_multiplier = global_state.stddev / global_state.l2_norm_clip - event = dp_event.GaussianDpEvent(noise_multiplier) + event = dp_accounting.GaussianDpEvent(noise_multiplier) return result, global_state, event diff --git a/tensorflow_privacy/privacy/dp_query/nested_query.py b/tensorflow_privacy/privacy/dp_query/nested_query.py index da1b808..45d5df2 100644 --- a/tensorflow_privacy/privacy/dp_query/nested_query.py +++ b/tensorflow_privacy/privacy/dp_query/nested_query.py @@ -15,12 +15,11 @@ import collections +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query import tree -from com_google_differential_py.python.dp_accounting import dp_event - class NestedQuery(dp_query.DPQuery): """Implements DPQuery interface for structured queries. @@ -102,7 +101,7 @@ class NestedQuery(dp_query.DPQuery): return (tf.nest.pack_sequence_as(self._queries, flat_estimates), tf.nest.pack_sequence_as(self._queries, flat_new_global_states), - dp_event.ComposedDpEvent(events=flat_events)) + dp_accounting.ComposedDpEvent(events=flat_events)) def derive_metrics(self, global_state): """Implements `tensorflow_privacy.DPQuery.derive_metrics`.""" diff --git a/tensorflow_privacy/privacy/dp_query/no_privacy_query.py b/tensorflow_privacy/privacy/dp_query/no_privacy_query.py index 5ca70bc..189926d 100644 --- a/tensorflow_privacy/privacy/dp_query/no_privacy_query.py +++ b/tensorflow_privacy/privacy/dp_query/no_privacy_query.py @@ -13,11 +13,10 @@ # limitations under the License. """Implements DPQuery interface for no privacy average queries.""" +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query -from com_google_differential_py.python.dp_accounting import dp_event - class NoPrivacySumQuery(dp_query.SumAggregationDPQuery): """Implements DPQuery interface for a sum query with no privacy. @@ -27,7 +26,7 @@ class NoPrivacySumQuery(dp_query.SumAggregationDPQuery): def get_noised_result(self, sample_state, global_state): """Implements `tensorflow_privacy.DPQuery.get_noised_result`.""" - return sample_state, global_state, dp_event.NonPrivateDpEvent() + return sample_state, global_state, dp_accounting.NonPrivateDpEvent() class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery): @@ -86,4 +85,4 @@ class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery): sum_state, denominator = sample_state result = tf.nest.map_structure(lambda t: t / denominator, sum_state) - return result, global_state, dp_event.NonPrivateDpEvent() + return result, global_state, dp_accounting.NonPrivateDpEvent() diff --git a/tensorflow_privacy/privacy/dp_query/quantile_adaptive_clip_sum_query.py b/tensorflow_privacy/privacy/dp_query/quantile_adaptive_clip_sum_query.py index 6fd9a18..0bf5569 100644 --- a/tensorflow_privacy/privacy/dp_query/quantile_adaptive_clip_sum_query.py +++ b/tensorflow_privacy/privacy/dp_query/quantile_adaptive_clip_sum_query.py @@ -15,13 +15,12 @@ import collections +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import quantile_estimator_query -from com_google_differential_py.python.dp_accounting import dp_event - class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery): """`DPQuery` for Gaussian sum queries with adaptive clipping. @@ -138,7 +137,7 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery): new_sum_query_state, new_quantile_estimator_state) - event = dp_event.ComposedDpEvent(events=[sum_event, quantile_event]) + event = dp_accounting.ComposedDpEvent(events=[sum_event, quantile_event]) return noised_vectors, new_global_state, event def derive_metrics(self, global_state): diff --git a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py index e71bc06..671339a 100644 --- a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py +++ b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py @@ -34,11 +34,11 @@ corresponding epsilon for a `target_delta` and `noise_multiplier` to achieve """ import attr +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import tree_aggregation -from com_google_differential_py.python.dp_accounting import dp_event # TODO(b/193679963): define `RestartQuery` and move `RestartIndicator` to be # in the same module. @@ -186,7 +186,7 @@ class TreeCumulativeSumQuery(dp_query.SumAggregationDPQuery): global_state, samples_cumulative_sum=new_cumulative_sum, tree_state=new_tree_state) - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return noised_cumulative_sum, new_global_state, event def reset_state(self, noised_results, global_state): @@ -428,7 +428,7 @@ class TreeResidualSumQuery(dp_query.SumAggregationDPQuery): global_state.previous_tree_noise) new_global_state = attr.evolve( global_state, previous_tree_noise=tree_noise, tree_state=new_tree_state) - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return noised_sample, new_global_state, event def reset_state(self, noised_results, global_state): diff --git a/tensorflow_privacy/privacy/dp_query/tree_range_query.py b/tensorflow_privacy/privacy/dp_query/tree_range_query.py index b3a603b..de0e1b2 100644 --- a/tensorflow_privacy/privacy/dp_query/tree_range_query.py +++ b/tensorflow_privacy/privacy/dp_query/tree_range_query.py @@ -21,13 +21,12 @@ import math from typing import Optional import attr +from com_google_differential_py.python.dp_accounting import tensorflow as tf from tensorflow_privacy.privacy.dp_query import distributed_discrete_gaussian_query from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import gaussian_query -from com_google_differential_py.python.dp_accounting import dp_event - def _build_tree_from_leaf(leaf_nodes: tf.Tensor, arity: int) -> tf.RaggedTensor: """A function constructs a complete tree given all the leaf nodes. @@ -204,7 +203,7 @@ class TreeRangeSumQuery(dp_query.SumAggregationDPQuery): ] tree = tf.RaggedTensor.from_row_splits( values=sample_state, row_splits=row_splits) - event = dp_event.UnsupportedDpEvent() + event = dp_accounting.UnsupportedDpEvent() return tree, new_global_state, event @classmethod diff --git a/tensorflow_privacy/privacy/logistic_regression/BUILD b/tensorflow_privacy/privacy/logistic_regression/BUILD index c1bc1ce..18f59aa 100644 --- a/tensorflow_privacy/privacy/logistic_regression/BUILD +++ b/tensorflow_privacy/privacy/logistic_regression/BUILD @@ -12,9 +12,7 @@ py_library( ":datasets", ":single_layer_softmax", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting:mechanism_calibration", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) diff --git a/tensorflow_privacy/privacy/logistic_regression/multinomial_logistic.py b/tensorflow_privacy/privacy/logistic_regression/multinomial_logistic.py index a4ab2a0..4d93f38 100644 --- a/tensorflow_privacy/privacy/logistic_regression/multinomial_logistic.py +++ b/tensorflow_privacy/privacy/logistic_regression/multinomial_logistic.py @@ -28,16 +28,13 @@ the algorithm of Abadi et al.: https://arxiv.org/pdf/1607.00133.pdf%20. import math from typing import List, Optional, Tuple +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf from tensorflow_privacy.privacy.logistic_regression import datasets from tensorflow_privacy.privacy.logistic_regression import single_layer_softmax from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting import mechanism_calibration -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant - @tf.keras.utils.register_keras_serializable(package='Custom', name='Kifer') class KiferRegularizer(tf.keras.regularizers.Regularizer): @@ -176,17 +173,17 @@ def compute_dpsgd_noise_multiplier(num_train: int, steps = int(math.ceil(epochs * num_train / batch_size)) def make_event_from_param(noise_multiplier): - return dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + return dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability=batch_size / num_train, - event=dp_event.GaussianDpEvent(noise_multiplier)), steps) + event=dp_accounting.GaussianDpEvent(noise_multiplier)), steps) - return mechanism_calibration.calibrate_dp_mechanism( - lambda: rdp_privacy_accountant.RdpAccountant(orders), + return dp_accounting.calibrate_dp_mechanism( + lambda: dp_accounting.rdp.RdpAccountant(orders), make_event_from_param, epsilon, delta, - mechanism_calibration.LowerEndpointAndGuess(0, 1), + dp_accounting.LowerEndpointAndGuess(0, 1), tol=tolerance) diff --git a/tutorials/BUILD b/tutorials/BUILD index 983f869..0a8f487 100644 --- a/tutorials/BUILD +++ b/tutorials/BUILD @@ -27,8 +27,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/optimizers:dp_optimizer", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -39,8 +38,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -51,8 +49,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/keras_models:dp_keras_model", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -63,8 +60,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -87,8 +83,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/optimizers:dp_optimizer", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) @@ -99,8 +94,7 @@ py_binary( srcs_version = "PY3", deps = [ "//tensorflow_privacy/privacy/optimizers:dp_optimizer", - "@com_google_differential_py//python/dp_accounting:dp_event", - "@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant", + "@com_google_differential_py//python/dp_accounting", ], ) diff --git a/tutorials/lm_dpsgd_tutorial.py b/tutorials/lm_dpsgd_tutorial.py index 10448f0..ed01ca5 100644 --- a/tutorials/lm_dpsgd_tutorial.py +++ b/tutorials/lm_dpsgd_tutorial.py @@ -35,15 +35,13 @@ import os from absl import app from absl import flags from absl import logging +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf from tensorflow import estimator as tf_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator import tensorflow_datasets as tfds - from tensorflow_privacy.privacy.optimizers import dp_optimizer -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant flags.DEFINE_boolean( @@ -153,11 +151,11 @@ def compute_epsilon(steps): orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / NB_TRAIN - accountant = rdp_privacy_accountant.RdpAccountant(orders) - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + accountant = dp_accounting.rdp.RdpAccountant(orders) + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability, - dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) + dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) accountant.compose(event) # Delta is set to 1e-5 because Penn TreeBank has 60000 training points. diff --git a/tutorials/mnist_dpsgd_tutorial_eager.py b/tutorials/mnist_dpsgd_tutorial_eager.py index 9d306d7..0e105a6 100644 --- a/tutorials/mnist_dpsgd_tutorial_eager.py +++ b/tutorials/mnist_dpsgd_tutorial_eager.py @@ -15,14 +15,11 @@ from absl import app from absl import flags +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant - - GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer tf.compat.v1.enable_eager_execution() @@ -47,13 +44,13 @@ def compute_epsilon(steps): if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) sampling_probability = FLAGS.batch_size / 60000 - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability, - dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) + dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) accountant.compose(event) diff --git a/tutorials/mnist_dpsgd_tutorial_keras.py b/tutorials/mnist_dpsgd_tutorial_keras.py index 2d57bcd..5265ee4 100644 --- a/tutorials/mnist_dpsgd_tutorial_keras.py +++ b/tutorials/mnist_dpsgd_tutorial_keras.py @@ -16,14 +16,11 @@ from absl import app from absl import flags from absl import logging - +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf - from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' @@ -47,13 +44,13 @@ def compute_epsilon(steps): if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) sampling_probability = FLAGS.batch_size / 60000 - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability, - dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) + dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) accountant.compose(event) diff --git a/tutorials/mnist_dpsgd_tutorial_keras_model.py b/tutorials/mnist_dpsgd_tutorial_keras_model.py index 0212f6b..497e7a2 100644 --- a/tutorials/mnist_dpsgd_tutorial_keras_model.py +++ b/tutorials/mnist_dpsgd_tutorial_keras_model.py @@ -16,13 +16,11 @@ from absl import app from absl import flags from absl import logging +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf - from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' @@ -46,13 +44,13 @@ def compute_epsilon(steps): if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) sampling_probability = FLAGS.batch_size / 60000 - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability, - dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) + dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) accountant.compose(event) diff --git a/tutorials/mnist_dpsgd_tutorial_vectorized.py b/tutorials/mnist_dpsgd_tutorial_vectorized.py index 142d279..9accb4f 100644 --- a/tutorials/mnist_dpsgd_tutorial_vectorized.py +++ b/tutorials/mnist_dpsgd_tutorial_vectorized.py @@ -16,14 +16,13 @@ from absl import app from absl import flags from absl import logging +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf from tensorflow import estimator as tf_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' @@ -51,13 +50,13 @@ def compute_epsilon(steps): if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) - accountant = rdp_privacy_accountant.RdpAccountant(orders) + accountant = dp_accounting.rdp.RdpAccountant(orders) sampling_probability = FLAGS.batch_size / 60000 - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( sampling_probability, - dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) + dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps) accountant.compose(event) diff --git a/tutorials/mnist_lr_tutorial.py b/tutorials/mnist_lr_tutorial.py index 0da8032..ee8e346 100644 --- a/tutorials/mnist_lr_tutorial.py +++ b/tutorials/mnist_lr_tutorial.py @@ -26,13 +26,12 @@ import math from absl import app from absl import flags from absl import logging +from com_google_differential_py.python.dp_accounting import numpy as np import tensorflow as tf from tensorflow import estimator as tf_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow_privacy.privacy.optimizers import dp_optimizer -from com_google_differential_py.python.dp_accounting import dp_event -from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer @@ -166,13 +165,14 @@ def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier): # Using RDP accountant to compute eps. Doing computation analytically is # an option. rdp = [order * coef for order in orders] - eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, delta) + eps = dp_accounting.rdp.compute_epsilon(orders, rdp, delta) print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta)) - accountant = rdp_privacy_accountant.RdpAccountant(orders) - event = dp_event.SelfComposedDpEvent( - dp_event.PoissonSampledDpEvent( - batch_size / samples, dp_event.GaussianDpEvent(noise_multiplier)), + accountant = dp_accounting.rdp.RdpAccountant(orders) + event = dp_accounting.SelfComposedDpEvent( + dp_accounting.PoissonSampledDpEvent( + batch_size / samples, + dp_accounting.GaussianDpEvent(noise_multiplier)), epochs * steps_per_epoch) accountant.compose(event) eps_sgm = accountant.get_epsilon(target_delta=delta)