Fixed some lint errors in TensorFlow Privacy.

* Fixed `g-backslash-continuation`
* Fixed `g-generic-assert`
* Fixed `g-generic-assert`
* Fixed `raise-missing-from`
* Fixed `unused-argument`

PiperOrigin-RevId: 424931881
This commit is contained in:
Michael Reneer 2022-01-28 12:30:35 -08:00 committed by A. Unique TensorFlower
parent e6536597c5
commit b37aef1751
4 changed files with 24 additions and 35 deletions

View file

@ -169,17 +169,15 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
"""See super class."""
max_class_weight = self.max_class_weight(class_weight, self.dtype)
delta = _ops.convert_to_tensor_v2(self.delta, dtype=self.dtype)
return self.C * max_class_weight / (delta *
tf.constant(2, dtype=self.dtype)) + \
self.reg_lambda
return self.C * max_class_weight / (
delta * tf.constant(2, dtype=self.dtype)) + self.reg_lambda
def lipchitz_constant(self, class_weight):
"""See super class."""
# if class_weight is provided,
# it should be a vector of the same size of number of classes
max_class_weight = self.max_class_weight(class_weight, self.dtype)
lc = self.C * max_class_weight + \
self.reg_lambda * self.radius()
lc = self.C * max_class_weight + self.reg_lambda * self.radius()
return lc
def kernel_regularizer(self):

View file

@ -90,7 +90,7 @@ class StrongConvexMixinTests(keras_parameterized.TestCase):
"""
loss = StrongConvexMixin()
ret = getattr(loss, fn, None)(*args)
self.assertEqual(ret, None)
self.assertNone(ret)
class BinaryCrossesntropyTests(keras_parameterized.TestCase):

View file

@ -194,9 +194,8 @@ class BoltOn(optimizer_v2.OptimizerV2):
distribution = self.noise_distribution.lower()
if distribution == _accepted_distributions[0]: # laplace
per_class_epsilon = self.epsilon / (output_dim)
l2_sensitivity = (2 *
loss.lipchitz_constant(self.class_weights)) / \
(loss.gamma() * self.n_samples * self.batch_size)
l2_sensitivity = (2 * loss.lipchitz_constant(self.class_weights)) / (
loss.gamma() * self.n_samples * self.batch_size)
unit_vector = tf.random.normal(
shape=(input_dim, output_dim),
mean=0,
@ -239,11 +238,11 @@ class BoltOn(optimizer_v2.OptimizerV2):
optim = object.__getattribute__(self, '_internal_optimizer')
try:
return object.__getattribute__(optim, name)
except AttributeError:
except AttributeError as e:
raise AttributeError(
"Neither '{0}' nor '{1}' object has attribute '{2}'"
''.format(self.__class__.__name__,
self._internal_optimizer.__class__.__name__, name))
self._internal_optimizer.__class__.__name__, name)) from e
def __setattr__(self, key, value):
"""Set attribute to self instance if its the internal optimizer.

View file

@ -213,9 +213,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
loss = TestLoss(1, 1, 1)
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(1)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
bolton._is_init = True # pylint: disable=protected-access
bolton.layers = model.layers
bolton.epsilon = 2
@ -282,9 +281,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(n_out, shape, init_value)
model.compile(bolton, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
bolton._is_init = True # pylint: disable=protected-access
bolton.layers = model.layers
bolton.epsilon = 2
@ -321,9 +319,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(1, (1,), 1)
model.compile(bolton, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
with bolton(noise, epsilon, model.layers, class_weights, 1, 1) as _:
pass
return _ops.convert_to_tensor_v2(bolton.epsilon, dtype=tf.float32)
@ -360,9 +357,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(1, (1,), 1)
model.compile(bolton, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
with bolton(noise, epsilon, model.layers, 1, 1, 1) as _:
pass
@ -392,9 +388,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(1, (1,), 1)
model.compile(bolton, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
getattr(bolton, fn)(*args)
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
@ -463,12 +458,10 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(optimizer, loss)
model = TestModel(3)
model.compile(optimizer, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
bolton._is_init = True # pylint: disable=protected-access
bolton.layers = model.layers
bolton.epsilon = 2
@ -505,9 +498,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
bolton = opt.BoltOn(TestOptimizer(), loss)
model = TestModel(1, (1,), 1)
model.compile(bolton, loss)
model.layers[0].kernel = \
model.layers[0].kernel_initializer((model.layer_input_shape[0],
model.n_outputs))
model.layers[0].kernel = model.layers[0].kernel_initializer(
(model.layer_input_shape[0], model.n_outputs))
bolton._is_init = True # pylint: disable=protected-access
bolton.noise_distribution = 'laplace'
bolton.epsilon = 1