Tests for Eager mode.
PiperOrigin-RevId: 236382269
This commit is contained in:
parent
517584d7a6
commit
b892d650cf
2 changed files with 146 additions and 10 deletions
136
privacy/optimizers/dp_optimizer_eager_test.py
Normal file
136
privacy/optimizers/dp_optimizer_eager_test.py
Normal file
|
@ -0,0 +1,136 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for differentially private optimizers."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis import privacy_ledger
|
||||
from privacy.optimizers import dp_optimizer
|
||||
from privacy.optimizers import gaussian_query
|
||||
|
||||
|
||||
class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
tf.enable_eager_execution()
|
||||
super(DPOptimizerEagerTest, self).setUp()
|
||||
|
||||
def _loss_fn(self, val0, val1):
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4,
|
||||
[-2.5, -2.5]),
|
||||
('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]),
|
||||
('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]))
|
||||
def testBaseline(self, cls, num_microbatches, expected_answer):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
|
||||
ledger = privacy_ledger.PrivacyLedger(1e6, num_microbatches / 1e6, 50, 50)
|
||||
dp_average_query = gaussian_query.GaussianAverageQuery(
|
||||
1.0e9, 0.0, num_microbatches, ledger)
|
||||
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
|
||||
ledger)
|
||||
|
||||
opt = cls(
|
||||
dp_average_query,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testClippingNorm(self, cls):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6, 50, 50)
|
||||
dp_average_query = gaussian_query.GaussianAverageQuery(1.0, 0.0, 1)
|
||||
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
|
||||
ledger)
|
||||
|
||||
opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences.
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testNoiseMultiplier(self, cls):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6, 5000, 5000)
|
||||
dp_average_query = gaussian_query.GaussianAverageQuery(4.0, 8.0, 1)
|
||||
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
|
||||
ledger)
|
||||
|
||||
opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
|
@ -27,13 +27,12 @@ from privacy.optimizers import dp_optimizer
|
|||
from privacy.optimizers import gaussian_query
|
||||
|
||||
|
||||
def loss(val0, val1):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
|
||||
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def _loss(self, val0, val1):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches, expected answer.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
|
||||
|
@ -71,7 +70,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
|
@ -96,7 +95,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences.
|
||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
|
@ -120,7 +119,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
|
@ -216,7 +215,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-2.5, -2.5], grads_and_vars[0][0])
|
||||
|
||||
|
@ -239,7 +238,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
|
@ -248,5 +247,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
Loading…
Reference in a new issue