Tests for Eager mode.

PiperOrigin-RevId: 236382269
This commit is contained in:
Steve Chien 2019-03-01 14:48:06 -08:00 committed by A. Unique TensorFlower
parent 517584d7a6
commit b892d650cf
2 changed files with 146 additions and 10 deletions

View file

@ -0,0 +1,136 @@
# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for differentially private optimizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from privacy.analysis import privacy_ledger
from privacy.optimizers import dp_optimizer
from privacy.optimizers import gaussian_query
class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
tf.enable_eager_execution()
super(DPOptimizerEagerTest, self).setUp()
def _loss_fn(self, val0, val1):
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
@parameterized.named_parameters(
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
[-2.5, -2.5]),
('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2,
[-2.5, -2.5]),
('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4,
[-2.5, -2.5]),
('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-2.5, -2.5]),
('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-2.5, -2.5]),
('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]),
('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-2.5, -2.5]),
('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]),
('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]))
def testBaseline(self, cls, num_microbatches, expected_answer):
with tf.GradientTape(persistent=True) as gradient_tape:
var0 = tf.Variable([1.0, 2.0])
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
ledger = privacy_ledger.PrivacyLedger(1e6, num_microbatches / 1e6, 50, 50)
dp_average_query = gaussian_query.GaussianAverageQuery(
1.0e9, 0.0, num_microbatches, ledger)
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
ledger)
opt = cls(
dp_average_query,
num_microbatches=num_microbatches,
learning_rate=2.0)
self.evaluate(tf.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
# Expected gradient is sum of differences divided by number of
# microbatches.
grads_and_vars = opt.compute_gradients(
lambda: self._loss_fn(var0, data0), [var0],
gradient_tape=gradient_tape)
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
@parameterized.named_parameters(
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
('DPAdam', dp_optimizer.DPAdamOptimizer))
def testClippingNorm(self, cls):
with tf.GradientTape(persistent=True) as gradient_tape:
var0 = tf.Variable([0.0, 0.0])
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6, 50, 50)
dp_average_query = gaussian_query.GaussianAverageQuery(1.0, 0.0, 1)
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
ledger)
opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0)
self.evaluate(tf.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
# Expected gradient is sum of differences.
grads_and_vars = opt.compute_gradients(
lambda: self._loss_fn(var0, data0), [var0],
gradient_tape=gradient_tape)
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
@parameterized.named_parameters(
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
('DPAdam', dp_optimizer.DPAdamOptimizer))
def testNoiseMultiplier(self, cls):
with tf.GradientTape(persistent=True) as gradient_tape:
var0 = tf.Variable([0.0])
data0 = tf.Variable([[0.0]])
ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6, 5000, 5000)
dp_average_query = gaussian_query.GaussianAverageQuery(4.0, 8.0, 1)
dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query,
ledger)
opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0)
self.evaluate(tf.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([0.0], self.evaluate(var0))
grads = []
for _ in range(1000):
grads_and_vars = opt.compute_gradients(
lambda: self._loss_fn(var0, data0), [var0],
gradient_tape=gradient_tape)
grads.append(grads_and_vars[0][0])
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
if __name__ == '__main__':
tf.test.main()

View file

@ -27,13 +27,12 @@ from privacy.optimizers import dp_optimizer
from privacy.optimizers import gaussian_query from privacy.optimizers import gaussian_query
def loss(val0, val1):
"""Loss function that is minimized at the mean of the input points."""
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase): class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
def _loss(self, val0, val1):
"""Loss function that is minimized at the mean of the input points."""
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
# Parameters for testing: optimizer, num_microbatches, expected answer. # Parameters for testing: optimizer, num_microbatches, expected answer.
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1, ('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
@ -71,7 +70,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
# Expected gradient is sum of differences divided by number of # Expected gradient is sum of differences divided by number of
# microbatches. # microbatches.
gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
grads_and_vars = sess.run(gradient_op) grads_and_vars = sess.run(gradient_op)
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0]) self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
@ -96,7 +95,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
self.assertAllClose([0.0, 0.0], self.evaluate(var0)) self.assertAllClose([0.0, 0.0], self.evaluate(var0))
# Expected gradient is sum of differences. # Expected gradient is sum of differences.
gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
grads_and_vars = sess.run(gradient_op) grads_and_vars = sess.run(gradient_op)
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
@ -120,7 +119,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
# Fetch params to validate initial values # Fetch params to validate initial values
self.assertAllClose([0.0], self.evaluate(var0)) self.assertAllClose([0.0], self.evaluate(var0))
gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
grads = [] grads = []
for _ in range(1000): for _ in range(1000):
grads_and_vars = sess.run(gradient_op) grads_and_vars = sess.run(gradient_op)
@ -216,7 +215,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
# Expected gradient is sum of differences divided by number of # Expected gradient is sum of differences divided by number of
# microbatches. # microbatches.
gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
grads_and_vars = sess.run(gradient_op) grads_and_vars = sess.run(gradient_op)
self.assertAllCloseAccordingToType([-2.5, -2.5], grads_and_vars[0][0]) self.assertAllCloseAccordingToType([-2.5, -2.5], grads_and_vars[0][0])
@ -239,7 +238,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
# Fetch params to validate initial values # Fetch params to validate initial values
self.assertAllClose([0.0], self.evaluate(var0)) self.assertAllClose([0.0], self.evaluate(var0))
gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
grads = [] grads = []
for _ in range(1000): for _ in range(1000):
grads_and_vars = sess.run(gradient_op) grads_and_vars = sess.run(gradient_op)
@ -248,5 +247,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
# Test standard deviation is close to l2_norm_clip * noise_multiplier. # Test standard deviation is close to l2_norm_clip * noise_multiplier.
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5) self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()