Update MIA README to include epsilon lower bound.
PiperOrigin-RevId: 689814531
This commit is contained in:
parent
d965556ebb
commit
ba903145df
2 changed files with 471 additions and 459 deletions
|
@ -10,7 +10,8 @@ memorization is present and thus the less privacy-preserving the model is.
|
|||
|
||||
The privacy vulnerability (or memorization potential) is measured via the area
|
||||
under the ROC-curve (`auc`) or via max{|fpr - tpr|} (`advantage`) of the attack
|
||||
classifier. These measures are very closely related.
|
||||
classifier. These measures are very closely related. We can also obtain a lower
|
||||
bound for the differential privacy epsilon.
|
||||
|
||||
The tests provided by the library are "black box". That is, only the outputs of
|
||||
the model are used (e.g., losses, logits, predictions). Neither model internals
|
||||
|
@ -38,9 +39,8 @@ from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_s
|
|||
# loss_test shape: (n_test, )
|
||||
|
||||
attacks_result = mia.run_attacks(
|
||||
AttackInputData(
|
||||
loss_train = loss_train,
|
||||
loss_test = loss_test))
|
||||
AttackInputData(loss_train=loss_train, loss_test=loss_test)
|
||||
)
|
||||
```
|
||||
|
||||
This example calls `run_attacks` with the default options to run a host of
|
||||
|
@ -57,9 +57,11 @@ Then, we can view the attack results by:
|
|||
```python
|
||||
print(attacks_result.summary())
|
||||
# Example output:
|
||||
# -> Best-performing attacks over all slices
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved an AUC of 0.59 on slice Entire dataset
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved an advantage of 0.20 on slice Entire dataset
|
||||
# Best-performing attacks over all slices
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72 on slice CORRECTLY_CLASSIFIED=False
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34 on slice CORRECTLY_CLASSIFIED=False
|
||||
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00 on slice CLASS=0
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711 on slice Entire dataset
|
||||
```
|
||||
|
||||
### Other codelabs
|
||||
|
@ -105,11 +107,12 @@ attack_input = AttackInputData(
|
|||
loss_train=loss_train,
|
||||
loss_test=loss_test,
|
||||
labels_train=labels_train,
|
||||
labels_test = labels_test)
|
||||
labels_test=labels_test,
|
||||
)
|
||||
```
|
||||
|
||||
Instead of `logits`, you can also specify `probs_train` and `probs_test` as the
|
||||
predicted probabilty vectors of each example.
|
||||
predicted probability vectors of each example.
|
||||
|
||||
Then, we specify some details of the attack. The first part includes the
|
||||
specifications of the slicing of the data. For example, we may want to evaluate
|
||||
|
@ -121,7 +124,8 @@ slicing_spec = SlicingSpec(
|
|||
entire_dataset=True,
|
||||
by_class=True,
|
||||
by_percentiles=False,
|
||||
by_classification_correctness = True)
|
||||
by_classification_correctness=True,
|
||||
)
|
||||
```
|
||||
|
||||
The second part specifies the classifiers for the attacker to use. Currently,
|
||||
|
@ -129,56 +133,64 @@ our API supports five classifiers, including `AttackType.THRESHOLD_ATTACK` for
|
|||
simple threshold attack, `AttackType.LOGISTIC_REGRESSION`,
|
||||
`AttackType.MULTI_LAYERED_PERCEPTRON`, `AttackType.RANDOM_FOREST`, and
|
||||
`AttackType.K_NEAREST_NEIGHBORS` which use the corresponding machine learning
|
||||
models. For some model, different classifiers can yield pertty different
|
||||
results. We can put multiple classifers in a list:
|
||||
models. For some model, different classifiers can yield pretty different
|
||||
results. We can put multiple classifiers in a list:
|
||||
|
||||
```python
|
||||
attack_types = [
|
||||
AttackType.THRESHOLD_ATTACK,
|
||||
AttackType.LOGISTIC_REGRESSION
|
||||
AttackType.LOGISTIC_REGRESSION,
|
||||
]
|
||||
```
|
||||
|
||||
Now, we can call the `run_attacks` methods with all specifications:
|
||||
|
||||
```python
|
||||
attacks_result = mia.run_attacks(attack_input=attack_input,
|
||||
attacks_result = mia.run_attacks(
|
||||
attack_input=attack_input,
|
||||
slicing_spec=slicing_spec,
|
||||
attack_types=attack_types)
|
||||
attack_types=attack_types,
|
||||
)
|
||||
```
|
||||
|
||||
This returns an object of type `AttackResults`. We can, for example, use the
|
||||
following code to see the attack results specificed per-slice, as we have
|
||||
request attacks by class and by model's classification correctness.
|
||||
following code to see the attack results specified per-slice, as we have request
|
||||
attacks by class and by model's classification correctness.
|
||||
|
||||
```python
|
||||
print(attacks_result.summary(by_slices = True))
|
||||
# Example output:
|
||||
# -> Best-performing attacks over all slices
|
||||
# THRESHOLD_ATTACK achieved an AUC of 0.75 on slice CORRECTLY_CLASSIFIED=False
|
||||
# THRESHOLD_ATTACK achieved an advantage of 0.38 on slice CORRECTLY_CLASSIFIED=False
|
||||
#
|
||||
# Best-performing attacks over all slices
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72 on slice CORRECTLY_CLASSIFIED=False
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34 on slice CORRECTLY_CLASSIFIED=False
|
||||
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00 on slice CLASS=0
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711 on slice Entire dataset
|
||||
|
||||
# Best-performing attacks over slice: "Entire dataset"
|
||||
# LOGISTIC_REGRESSION achieved an AUC of 0.61
|
||||
# THRESHOLD_ATTACK achieved an advantage of 0.22
|
||||
#
|
||||
# LOGISTIC_REGRESSION (with 50000 training and 10000 test examples) achieved an AUC of 0.58
|
||||
# LOGISTIC_REGRESSION (with 50000 training and 10000 test examples) achieved an advantage of 0.17
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved a positive predictive value of 0.86
|
||||
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711
|
||||
|
||||
# Best-performing attacks over slice: "CLASS=0"
|
||||
# LOGISTIC_REGRESSION achieved an AUC of 0.62
|
||||
# LOGISTIC_REGRESSION achieved an advantage of 0.24
|
||||
#
|
||||
# Best-performing attacks over slice: "CLASS=1"
|
||||
# LOGISTIC_REGRESSION achieved an AUC of 0.61
|
||||
# LOGISTIC_REGRESSION achieved an advantage of 0.19
|
||||
#
|
||||
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved an AUC of 0.63
|
||||
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved an advantage of 0.19
|
||||
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00
|
||||
# THRESHOLD_ATTACK (with 5000 training and 1000 test examples) achieved top-5 epsilon lower bounds of 4.1920, 4.1645, 4.1364, 4.1074, 4.0775
|
||||
|
||||
# ...
|
||||
#
|
||||
|
||||
# Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=True"
|
||||
# LOGISTIC_REGRESSION achieved an AUC of 0.53
|
||||
# THRESHOLD_ATTACK achieved an advantage of 0.05
|
||||
#
|
||||
# LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved an AUC of 0.51
|
||||
# LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved an advantage of 0.05
|
||||
# LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved a positive predictive value of 0.94
|
||||
# THRESHOLD_ATTACK (with 42959 training and 6844 test examples) achieved top-5 epsilon lower bounds of 0.9495, 0.6358, 0.5630, 0.4536, 0.4341
|
||||
|
||||
# Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=False"
|
||||
# THRESHOLD_ATTACK achieved an AUC of 0.75
|
||||
# THRESHOLD_ATTACK achieved an advantage of 0.38
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved a positive predictive value of 0.97
|
||||
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved top-5 epsilon lower bounds of 3.8844, 3.8678, 3.8510, 3.8339, 3.8165
|
||||
```
|
||||
|
||||
#### Viewing and plotting the attack results
|
||||
|
@ -186,23 +198,30 @@ print(attacks_result.summary(by_slices = True))
|
|||
We have seen an example of using `summary()` to view the attack results as text.
|
||||
We also provide some other ways for inspecting the attack results.
|
||||
|
||||
To get the attack that achieves the maximum attacker advantage or AUC, we can do
|
||||
To get the attack that achieves the maximum attacker advantage, AUC, or epsilon
|
||||
lower bound, we can do
|
||||
|
||||
```python
|
||||
max_auc_attacker = attacks_result.get_result_with_max_auc()
|
||||
max_advantage_attacker = attacks_result.get_result_with_max_attacker_advantage()
|
||||
max_epsilon_attacker = attacks_result.get_result_with_max_epsilon()
|
||||
```
|
||||
|
||||
Then, for individual attack, such as `max_auc_attacker`, we can check its type,
|
||||
attacker advantage and AUC by
|
||||
attacker advantage, AUC, and epsilon lower bound by
|
||||
|
||||
```python
|
||||
print("Attack type with max AUC: %s, AUC of %.2f, Attacker advantage of %.2f" %
|
||||
(max_auc_attacker.attack_type,
|
||||
print(
|
||||
"Attack type with max AUC: %s, AUC of %.2f, Attacker advantage of %.2f, Epsilon lower bound of %s"
|
||||
% (
|
||||
max_auc_attacker.attack_type,
|
||||
max_auc_attacker.roc_curve.get_auc(),
|
||||
max_auc_attacker.roc_curve.get_attacker_advantage()))
|
||||
max_auc_attacker.roc_curve.get_attacker_advantage(),
|
||||
max_auc_attacker.get_epsilon_lower_bound()
|
||||
)
|
||||
)
|
||||
# Example output:
|
||||
# -> Attack type with max AUC: THRESHOLD_ATTACK, AUC of 0.75, Attacker advantage of 0.38
|
||||
# Attack type with max AUC: LOGISTIC_REGRESSION, AUC of 0.72, Attacker advantage of 0.34, Epsilon lower bound of [3.88435257 3.86781797 3.85100545 3.83390548 3.81650809]
|
||||
```
|
||||
|
||||
We can also plot its ROC curve by
|
||||
|
@ -225,16 +244,16 @@ import pandas as pd
|
|||
pd.set_option("display.max_rows", 8, "display.max_columns", None)
|
||||
print(attacks_result.calculate_pd_dataframe())
|
||||
# Example output:
|
||||
# slice feature slice value attack type Attacker advantage AUC
|
||||
# 0 entire_dataset threshold 0.216440 0.600630
|
||||
# 1 entire_dataset lr 0.212073 0.612989
|
||||
# 2 class 0 threshold 0.226000 0.611669
|
||||
# 3 class 0 lr 0.239452 0.624076
|
||||
# .. ... ... ... ... ...
|
||||
# 22 correctly_classfied True threshold 0.054907 0.471290
|
||||
# 23 correctly_classfied True lr 0.046986 0.525194
|
||||
# 24 correctly_classfied False threshold 0.379465 0.748138
|
||||
# 25 correctly_classfied False lr 0.370713 0.737148
|
||||
# slice feature slice value train size test size attack type Attacker advantage Positive predictive value AUC Epsilon lower bound_1 Epsilon lower bound_2 Epsilon lower bound_3 Epsilon lower bound_4 Epsilon lower bound_5
|
||||
# 0 Entire dataset 50000 10000 THRESHOLD_ATTACK 0.172520 0.862614 0.581630 4.625393 4.612104 4.598635 4.584982 4.571140
|
||||
# 1 Entire dataset 50000 10000 LOGISTIC_REGRESSION 0.173060 0.862081 0.583981 4.531399 4.513775 4.511974 4.498905 4.492165
|
||||
# 2 class 0 5000 1000 THRESHOLD_ATTACK 0.162000 0.877551 0.580728 4.191954 4.164547 4.136368 4.107372 4.077511
|
||||
# 3 class 0 5000 1000 LOGISTIC_REGRESSION 0.193800 1.000000 0.627758 3.289194 3.220285 3.146292 3.118849 3.066407
|
||||
# ...
|
||||
# 22 correctly_classified True 42959 6844 THRESHOLD_ATTACK 0.043953 0.862643 0.474713 0.949550 0.635773 0.563032 0.453640 0.434125
|
||||
# 23 correctly_classified True 42959 6844 LOGISTIC_REGRESSION 0.048963 0.943218 0.505334 0.597257 0.596095 0.594016 0.592702 0.590765
|
||||
# 24 correctly_classified False 7041 3156 THRESHOLD_ATTACK 0.326865 0.941176 0.707597 3.818741 3.805451 3.791982 3.778329 3.764488
|
||||
# 25 correctly_classified False 7041 3156 LOGISTIC_REGRESSION 0.336655 0.972222 0.717386 3.884353 3.867818 3.851005 3.833905 3.816508
|
||||
```
|
||||
|
||||
#### Advanced Membership Inference Attacks
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "1eiwVljWpzM7"
|
||||
},
|
||||
"source": [
|
||||
|
@ -14,9 +13,6 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"cellView": "both",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "4rmwPgXeptiS"
|
||||
},
|
||||
"outputs": [],
|
||||
|
@ -37,7 +33,6 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "YM2gRaJMqvMi"
|
||||
},
|
||||
"source": [
|
||||
|
@ -47,24 +42,22 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "-B5ZvlSqqLaR"
|
||||
},
|
||||
"source": [
|
||||
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
|
||||
" <td>\n",
|
||||
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
|
||||
" </td>\n",
|
||||
" <td>\n",
|
||||
" <a target=\"_blank\" href=\"https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n",
|
||||
" </td>\n",
|
||||
"</table>"
|
||||
"\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
|
||||
" \u003ctd\u003e\n",
|
||||
" \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
|
||||
" \u003c/td\u003e\n",
|
||||
" \u003ctd\u003e\n",
|
||||
" \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
|
||||
" \u003c/td\u003e\n",
|
||||
"\u003c/table\u003e"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "9rMuytY7Nn8P"
|
||||
},
|
||||
"source": [
|
||||
|
@ -75,30 +68,35 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "FUWqArj_q8vs"
|
||||
},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"First, set this notebook's runtime to use a GPU, under Runtime > Change runtime type > Hardware accelerator. Then, begin importing the necessary libraries."
|
||||
"First, set this notebook's runtime to use a GPU, under Runtime \u003e Change runtime type \u003e Hardware accelerator. Then, begin importing the necessary libraries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"cellView": "form",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"executionInfo": {
|
||||
"elapsed": 4130,
|
||||
"status": "ok",
|
||||
"timestamp": 1729790860657,
|
||||
"user": {
|
||||
"displayName": "",
|
||||
"userId": ""
|
||||
},
|
||||
"user_tz": 420
|
||||
},
|
||||
"id": "Lr1pwHcbralz"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# @title Import statements.\n",
|
||||
"from typing import Text, Tuple\n",
|
||||
"import numpy as np\n",
|
||||
"from typing import Tuple, Text\n",
|
||||
"from scipy import special\n",
|
||||
"\n",
|
||||
"import tensorflow as tf\n",
|
||||
"import tensorflow_datasets as tfds\n",
|
||||
"\n",
|
||||
|
@ -106,6 +104,7 @@
|
|||
"tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)\n",
|
||||
"from warnings import simplefilter\n",
|
||||
"from sklearn.exceptions import ConvergenceWarning\n",
|
||||
"\n",
|
||||
"simplefilter(action=\"ignore\", category=ConvergenceWarning)\n",
|
||||
"simplefilter(action=\"ignore\", category=FutureWarning)"
|
||||
]
|
||||
|
@ -113,7 +112,6 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "ucw81ar6ru-6"
|
||||
},
|
||||
"source": [
|
||||
|
@ -125,8 +123,6 @@
|
|||
"execution_count": null,
|
||||
"metadata": {
|
||||
"cellView": "both",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "zcqAmiGH90kl"
|
||||
},
|
||||
"outputs": [],
|
||||
|
@ -139,7 +135,6 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "pBbcG86th_sW"
|
||||
},
|
||||
"source": [
|
||||
|
@ -150,9 +145,7 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"cellView": "form",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"collapsed": true,
|
||||
"id": "vCyOWyyhXLib"
|
||||
},
|
||||
"outputs": [],
|
||||
|
@ -169,10 +162,12 @@
|
|||
"epochs = 100 # Privacy risks are especially visible with lots of epochs.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def small_cnn(input_shape: Tuple[int],\n",
|
||||
"def small_cnn(\n",
|
||||
" input_shape: Tuple[int],\n",
|
||||
" num_classes: int,\n",
|
||||
" num_conv: int,\n",
|
||||
" activation: Text = 'relu') -> tf.keras.models.Sequential:\n",
|
||||
" activation: Text = 'relu',\n",
|
||||
") -\u003e tf.keras.models.Sequential:\n",
|
||||
" \"\"\"Setup a small CNN for image classification.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
|
@ -200,12 +195,14 @@
|
|||
"\n",
|
||||
"print('Loading the dataset.')\n",
|
||||
"train_ds = tfds.as_numpy(\n",
|
||||
" tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))\n",
|
||||
" tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1)\n",
|
||||
")\n",
|
||||
"test_ds = tfds.as_numpy(\n",
|
||||
" tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1))\n",
|
||||
"x_train = train_ds['image'].astype('float32') / 255.\n",
|
||||
" tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1)\n",
|
||||
")\n",
|
||||
"x_train = train_ds['image'].astype('float32') / 255.0\n",
|
||||
"y_train_indices = train_ds['label'][:, np.newaxis]\n",
|
||||
"x_test = test_ds['image'].astype('float32') / 255.\n",
|
||||
"x_test = test_ds['image'].astype('float32') / 255.0\n",
|
||||
"y_test_indices = test_ds['label'][:, np.newaxis]\n",
|
||||
"\n",
|
||||
"# Convert class vectors to binary class matrices.\n",
|
||||
|
@ -215,7 +212,8 @@
|
|||
"input_shape = x_train.shape[1:]\n",
|
||||
"\n",
|
||||
"model = small_cnn(\n",
|
||||
" input_shape, num_classes, num_conv=num_conv, activation=activation)\n",
|
||||
" input_shape, num_classes, num_conv=num_conv, activation=activation\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print('learning rate %f', lr)\n",
|
||||
"\n",
|
||||
|
@ -230,14 +228,14 @@
|
|||
" batch_size=batch_size,\n",
|
||||
" epochs=epochs,\n",
|
||||
" validation_data=(x_test, y_test),\n",
|
||||
" shuffle=True)\n",
|
||||
" shuffle=True,\n",
|
||||
")\n",
|
||||
"print('Finished training.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "ee-zjGGGV1DC"
|
||||
},
|
||||
"source": [
|
||||
|
@ -251,8 +249,6 @@
|
|||
"execution_count": null,
|
||||
"metadata": {
|
||||
"cellView": "both",
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "um9r0tSiPx4u"
|
||||
},
|
||||
"outputs": [],
|
||||
|
@ -270,14 +266,17 @@
|
|||
"cce = tf.keras.backend.categorical_crossentropy\n",
|
||||
"constant = tf.keras.backend.constant\n",
|
||||
"\n",
|
||||
"loss_train = cce(constant(y_train), constant(prob_train), from_logits=False).numpy()\n",
|
||||
"loss_test = cce(constant(y_test), constant(prob_test), from_logits=False).numpy()"
|
||||
"loss_train = cce(\n",
|
||||
" constant(y_train), constant(prob_train), from_logits=False\n",
|
||||
").numpy()\n",
|
||||
"loss_test = cce(\n",
|
||||
" constant(y_test), constant(prob_test), from_logits=False\n",
|
||||
").numpy()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "QETxVOHLiHP4"
|
||||
},
|
||||
"source": [
|
||||
|
@ -292,44 +291,40 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "B8NIwhVwQT7I"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData\n",
|
||||
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec\n",
|
||||
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType\n",
|
||||
"\n",
|
||||
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec\n",
|
||||
"import tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.plotting as plotting\n",
|
||||
"\n",
|
||||
"labels_train = np.argmax(y_train, axis=1)\n",
|
||||
"labels_test = np.argmax(y_test, axis=1)\n",
|
||||
"\n",
|
||||
"input = AttackInputData(\n",
|
||||
"attack_input = AttackInputData(\n",
|
||||
" logits_train=logits_train,\n",
|
||||
" logits_test=logits_test,\n",
|
||||
" loss_train=loss_train,\n",
|
||||
" loss_test=loss_test,\n",
|
||||
" labels_train=labels_train,\n",
|
||||
" labels_test = labels_test\n",
|
||||
" labels_test=labels_test,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Run several attacks for different data slices\n",
|
||||
"attacks_result = mia.run_attacks(input,\n",
|
||||
" SlicingSpec(\n",
|
||||
" entire_dataset = True,\n",
|
||||
" by_class = True,\n",
|
||||
" by_classification_correctness = True\n",
|
||||
"attacks_result = mia.run_attacks(\n",
|
||||
" attack_input=attack_input,\n",
|
||||
" slicing_spec=SlicingSpec(\n",
|
||||
" entire_dataset=True, by_class=True, by_classification_correctness=True\n",
|
||||
" ),\n",
|
||||
" attack_types = [\n",
|
||||
" AttackType.THRESHOLD_ATTACK,\n",
|
||||
" AttackType.LOGISTIC_REGRESSION])\n",
|
||||
" attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.LOGISTIC_REGRESSION],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Plot the ROC curve of the best classifier\n",
|
||||
"fig = plotting.plot_roc_curve(\n",
|
||||
" attacks_result.get_result_with_max_auc().roc_curve)\n",
|
||||
" attacks_result.get_result_with_max_auc().roc_curve\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Print a user-friendly summary of the attacks\n",
|
||||
"print(attacks_result.summary(by_slices=True))"
|
||||
|
@ -338,7 +333,6 @@
|
|||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "E9zwsPGFujVq"
|
||||
},
|
||||
"source": [
|
||||
|
@ -353,9 +347,8 @@
|
|||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"last_runtime": {
|
||||
"build_target": "//learning/deepmind/public/tools/ml_python:ml_notebook",
|
||||
"build_target": "//learning/grp/tools/ml_python/gpu:ml_notebook",
|
||||
"kind": "private"
|
||||
},
|
||||
"name": "Membership inference codelab",
|
||||
|
@ -389,5 +382,5 @@
|
|||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue