diff --git a/tutorials/mnist_dpsgd_tutorial_keras.py b/tutorials/mnist_dpsgd_tutorial_keras.py index 71f67cb..865fb9f 100644 --- a/tutorials/mnist_dpsgd_tutorial_keras.py +++ b/tutorials/mnist_dpsgd_tutorial_keras.py @@ -41,10 +41,10 @@ flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.1, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') -flags.DEFINE_integer('batch_size', 256, 'Batch size') +flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 60, 'Number of epochs') flags.DEFINE_integer( - 'microbatches', 256, 'Number of microbatches ' + 'microbatches', 250, 'Number of microbatches ' '(must evenly divide batch_size)') flags.DEFINE_string('model_dir', None, 'Model directory') @@ -121,9 +121,8 @@ def main(unused_argv): optimizer = DPGradientDescentGaussianOptimizer( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, - num_microbatches=FLAGS.num_microbatches, - learning_rate=FLAGS.learning_rate, - unroll_microbatches=True) + num_microbatches=FLAGS.microbatches, + learning_rate=FLAGS.learning_rate) # Compute vector of per-example loss rather than its mean over a minibatch. loss = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.losses.Reduction.NONE)