Update docstring for DPModel class.

PiperOrigin-RevId: 382855055
This commit is contained in:
Steve Chien 2021-07-02 20:04:01 -07:00 committed by A. Unique TensorFlower
parent 45c935832a
commit beed219d20

View file

@ -20,7 +20,42 @@ def make_dp_model_class(cls):
"""Given a subclass of `tf.keras.Model`, returns a DP-SGD version of it.""" """Given a subclass of `tf.keras.Model`, returns a DP-SGD version of it."""
class DPModelClass(cls): # pylint: disable=empty-docstring class DPModelClass(cls): # pylint: disable=empty-docstring
__doc__ = ('DP subclass of `tf.keras.{}`.').format(cls.__name__) __doc__ = ("""DP subclass of `{base_model}`.
This can be used as a differentially private replacement for
{base_model}. This class implements DP-SGD using the standard
Gaussian mechanism.
When instantiating this class, you need to supply several
DP-related arguments followed by the standard arguments for
`{short_base_model}`.
Examples:
```python
# Create Model instance.
model = {dp_model_class}(l2_norm_clip=1.0, noise_multiplier=0.5, use_xla=True,
<standard arguments>)
```
You should use your {dp_model_class} instance with a standard instance
of `tf.keras.Optimizer` as the optimizer, and a standard reduced loss.
You do not need to use a differentially private optimizer.
```python
# Use a standard (non-DP) optimizer.
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
# Use a standard reduced loss.
loss = tf.keras.losses.MeanSquaredError()
model.compile(optimizer=optimizer, loss=loss)
model.fit(train_data, train_labels, epochs=1, batch_size=32)
```
""").format(base_model='tf.keras.' + cls.__name__,
short_base_model=cls.__name__,
dp_model_class='DP' + cls.__name__)
def __init__( def __init__(
self, self,