Sparsity Preserving DP-SGD in TF Privacy

Add support for calculating contribution counts to registry function for sparsity preserving noise.

See https://research.google/blog/sparsity-preserving-differentially-private-training/ for more details on the algorithm.

PiperOrigin-RevId: 662162597
This commit is contained in:
A. Unique TensorFlower 2024-08-12 11:21:20 -07:00
parent e42b574465
commit bf6cf4dec9
6 changed files with 120 additions and 1 deletions

View file

@ -46,6 +46,8 @@ py_library(
":common_manip_utils", ":common_manip_utils",
":layer_registry", ":layer_registry",
":type_aliases", ":type_aliases",
"//tensorflow_privacy/privacy/sparsity_preserving_noise:layer_registry",
"//tensorflow_privacy/privacy/sparsity_preserving_noise:type_aliases",
], ],
) )
@ -55,7 +57,11 @@ py_test(
python_version = "PY3", python_version = "PY3",
shard_count = 8, shard_count = 8,
srcs_version = "PY3", srcs_version = "PY3",
deps = [":gradient_clipping_utils"], deps = [
":gradient_clipping_utils",
":layer_registry",
"//tensorflow_privacy/privacy/sparsity_preserving_noise:layer_registry",
],
) )
py_library( py_library(

View file

@ -164,6 +164,7 @@ def compute_gradient_norms(
registry_generator_fn = gradient_clipping_utils.get_registry_generator_fn( registry_generator_fn = gradient_clipping_utils.get_registry_generator_fn(
tape=tape, tape=tape,
layer_registry=layer_registry, layer_registry=layer_registry,
sparse_noise_layer_registry=None,
num_microbatches=num_microbatches, num_microbatches=num_microbatches,
) )
layer_grad_vars, generator_outputs_list = ( layer_grad_vars, generator_outputs_list = (

View file

@ -132,6 +132,7 @@ def _run_model_forward_backward_pass(
registry_generator_fn = gradient_clipping_utils.get_registry_generator_fn( registry_generator_fn = gradient_clipping_utils.get_registry_generator_fn(
tape=tape, tape=tape,
layer_registry=layer_registry.make_default_layer_registry(), layer_registry=layer_registry.make_default_layer_registry(),
sparse_noise_layer_registry=None,
num_microbatches=None, num_microbatches=None,
) )
layer_grad_vars, registry_fn_outputs_list = ( layer_grad_vars, registry_fn_outputs_list = (

View file

@ -22,6 +22,8 @@ import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry as lr from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry as lr
from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases
from tensorflow_privacy.privacy.sparsity_preserving_noise import layer_registry as snlr
from tensorflow_privacy.privacy.sparsity_preserving_noise import type_aliases as sn_type_aliases
@dataclasses.dataclass(frozen=True) @dataclasses.dataclass(frozen=True)
@ -29,6 +31,9 @@ class RegistryGeneratorFunctionOutput:
layer_id: str layer_id: str
layer_vars: Optional[Sequence[tf.Variable]] layer_vars: Optional[Sequence[tf.Variable]]
layer_sqr_norm_fn: Optional[type_aliases.SquareNormFunction] layer_sqr_norm_fn: Optional[type_aliases.SquareNormFunction]
varname_to_count_contribution_fn: Optional[
dict[str, sn_type_aliases.ContributionCountHistogramFn]
]
layer_trainable_weights: Optional[Sequence[tf.Variable]] layer_trainable_weights: Optional[Sequence[tf.Variable]]
@ -46,6 +51,7 @@ def has_internal_compute_graph(input_object: Any):
def get_registry_generator_fn( def get_registry_generator_fn(
tape: tf.GradientTape, tape: tf.GradientTape,
layer_registry: lr.LayerRegistry, layer_registry: lr.LayerRegistry,
sparse_noise_layer_registry: snlr.LayerRegistry,
num_microbatches: Optional[type_aliases.BatchSize] = None, num_microbatches: Optional[type_aliases.BatchSize] = None,
) -> Optional[Callable[..., Tuple[tf.Tensor, RegistryGeneratorFunctionOutput]]]: ) -> Optional[Callable[..., Tuple[tf.Tensor, RegistryGeneratorFunctionOutput]]]:
"""Creates the generator function for `model_forward_backward_pass()`. """Creates the generator function for `model_forward_backward_pass()`.
@ -58,6 +64,10 @@ def get_registry_generator_fn(
`output` is the pre-activator tensor, `sqr_grad_norms` is related to the `output` is the pre-activator tensor, `sqr_grad_norms` is related to the
squared norms of a layer's pre-activation tensor, and `vars` are relevant squared norms of a layer's pre-activation tensor, and `vars` are relevant
trainable trainable
sparse_noise_layer_registry: A `LayerRegistry` instance containing functions
that help compute contribution counts for sparse noise. See
`tensorflow_privacy.privacy.sparsity_preserving_noise.layer_registry` for
more details.
num_microbatches: An optional number or scalar `tf.Tensor` for the number of num_microbatches: An optional number or scalar `tf.Tensor` for the number of
microbatches. If not None, indicates that the loss is grouped into microbatches. If not None, indicates that the loss is grouped into
num_microbatches (in this case, the batch dimension needs to be a multiple num_microbatches (in this case, the batch dimension needs to be a multiple
@ -83,6 +93,16 @@ def get_registry_generator_fn(
'be used for efficient gradient clipping.' 'be used for efficient gradient clipping.'
% layer_instance.__class__.__name__ % layer_instance.__class__.__name__
) )
varname_to_count_contribution_fn = None
if sparse_noise_layer_registry and sparse_noise_layer_registry.is_elem(
layer_instance
):
count_contribution_registry_fn = sparse_noise_layer_registry.lookup(
layer_instance
)
varname_to_count_contribution_fn = count_contribution_registry_fn(
layer_instance, args, kwargs, num_microbatches
)
registry_fn = layer_registry.lookup(layer_instance) registry_fn = layer_registry.lookup(layer_instance)
(layer_vars, layer_outputs, layer_sqr_norm_fn) = registry_fn( (layer_vars, layer_outputs, layer_sqr_norm_fn) = registry_fn(
layer_instance, args, kwargs, tape, num_microbatches layer_instance, args, kwargs, tape, num_microbatches
@ -91,6 +111,7 @@ def get_registry_generator_fn(
layer_id=str(id(layer_instance)), layer_id=str(id(layer_instance)),
layer_vars=layer_vars, layer_vars=layer_vars,
layer_sqr_norm_fn=layer_sqr_norm_fn, layer_sqr_norm_fn=layer_sqr_norm_fn,
varname_to_count_contribution_fn=varname_to_count_contribution_fn,
layer_trainable_weights=layer_instance.trainable_weights, layer_trainable_weights=layer_instance.trainable_weights,
) )
else: else:

View file

@ -17,6 +17,8 @@ from typing import Any
from absl.testing import parameterized from absl.testing import parameterized
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry as lr
from tensorflow_privacy.privacy.sparsity_preserving_noise import layer_registry as snlr
# ============================================================================== # ==============================================================================
@ -175,5 +177,92 @@ class GenerateOutputsUsingCoreKerasLayers(
) )
class RegistryGeneratorFnTest(tf.test.TestCase, parameterized.TestCase):
def _get_sparse_layer_registry(self):
def count_contribution_fn(_):
return None
def registry_fn(*_):
return {'var': count_contribution_fn}
registry = snlr.LayerRegistry()
registry.insert(tf.keras.layers.Embedding, registry_fn)
return registry, count_contribution_fn
def _get_layer_registry(self):
var = tf.Variable(1.0)
output = tf.ones((1, 1))
def sqr_norm_fn(_):
return None
def registry_fn(*_):
return [var], output, sqr_norm_fn
registry = lr.LayerRegistry()
registry.insert(tf.keras.layers.Embedding, registry_fn)
registry.insert(tf.keras.layers.Dense, registry_fn)
return registry, var, output, sqr_norm_fn
def test_registry_generator_fn(self):
inputs = tf.constant([[0, 1]])
model = tf.keras.Sequential([
tf.keras.layers.Embedding(10, 1),
tf.keras.layers.Dense(1),
])
sparse_layer_registry, count_contribution_fn = (
self._get_sparse_layer_registry()
)
layer_registry, var, output, sqr_norm_fn = self._get_layer_registry()
registry_generator_fn = gradient_clipping_utils.get_registry_generator_fn(
tape=tf.GradientTape(),
layer_registry=layer_registry,
sparse_noise_layer_registry=sparse_layer_registry,
num_microbatches=None,
)
embedding_layer = model.layers[0]
out, embedding_registry_generator_fn_output = registry_generator_fn(
embedding_layer,
[inputs],
{},
)
expected_embedding_registry_generator_fn_output = (
gradient_clipping_utils.RegistryGeneratorFunctionOutput(
layer_id=str(id(embedding_layer)),
layer_vars=[var],
layer_sqr_norm_fn=sqr_norm_fn,
varname_to_count_contribution_fn={'var': count_contribution_fn},
layer_trainable_weights=embedding_layer.trainable_weights,
)
)
self.assertEqual(
embedding_registry_generator_fn_output,
expected_embedding_registry_generator_fn_output,
)
self.assertEqual(out, output)
dense_layer = model.layers[1]
out, dense_registry_generator_fn_output = registry_generator_fn(
dense_layer,
[inputs],
{},
)
expected_dense_registry_generator_fn_output = (
gradient_clipping_utils.RegistryGeneratorFunctionOutput(
layer_id=str(id(dense_layer)),
layer_vars=[var],
layer_sqr_norm_fn=sqr_norm_fn,
varname_to_count_contribution_fn=None,
layer_trainable_weights=dense_layer.trainable_weights,
)
)
self.assertEqual(
dense_registry_generator_fn_output,
expected_dense_registry_generator_fn_output,
)
self.assertEqual(out, output)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()

View file

@ -280,6 +280,7 @@ def make_dp_model_class(cls):
gradient_clipping_utils.get_registry_generator_fn( gradient_clipping_utils.get_registry_generator_fn(
tape=tape, tape=tape,
layer_registry=self._layer_registry, layer_registry=self._layer_registry,
sparse_noise_layer_registry=None,
num_microbatches=num_microbatches, num_microbatches=num_microbatches,
) )
) )