Ensuring pylint is 10/10

This commit is contained in:
Christopher Choquette Choo 2019-07-18 15:04:35 -04:00
parent b03eb6914b
commit c05c2aa0d4
5 changed files with 105 additions and 350 deletions

View file

@ -17,9 +17,9 @@ from distutils.version import LooseVersion
import tensorflow as tf import tensorflow as tf
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
raise ImportError("Please upgrade your version of tensorflow from: {0} " raise ImportError("Please upgrade your version "
"to at least 2.0.0 to use privacy/bolton".format( "of tensorflow from: {0} to at least 2.0.0 to "
LooseVersion(tf.__version__))) "use privacy/bolton".format(LooseVersion(tf.__version__)))
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts. if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
pass pass
else: else:

View file

@ -160,11 +160,11 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
one = tf.constant(1, dtype=self.dtype) one = tf.constant(1, dtype=self.dtype)
four = tf.constant(4, dtype=self.dtype) four = tf.constant(4, dtype=self.dtype)
if z > one + h: if z > one + h: # pylint: disable=no-else-return
return _ops.convert_to_tensor_v2(0, dtype=self.dtype) return _ops.convert_to_tensor_v2(0, dtype=self.dtype)
elif tf.math.abs(one - z) <= h: elif tf.math.abs(one - z) <= h:
return one / (four * h) * tf.math.pow(one + h - z, 2) return one / (four * h) * tf.math.pow(one + h - z, 2)
return one - z # elif: z < one - h return one - z
def radius(self): def radius(self):
"""See super class.""" """See super class."""
@ -300,281 +300,3 @@ class StrongConvexBinaryCrossentropy(
set to half the 0.5 * reg_lambda. set to half the 0.5 * reg_lambda.
""" """
return L1L2(l2=self.reg_lambda/2) return L1L2(l2=self.reg_lambda/2)
# class StrongConvexSparseCategoricalCrossentropy(
# losses.CategoricalCrossentropy,
# StrongConvexMixin
# ):
# """
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
# regularization.
# """
#
# def __init__(self,
# reg_lambda: float,
# C: float,
# radius_constant: float,
# from_logits: bool = True,
# label_smoothing: float = 0,
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
# name: str = 'binarycrossentropy',
# dtype=tf.float32):
# """
# Args:
# reg_lambda: Weight regularization constant
# C: Penalty parameter C of the loss term
# radius_constant: constant defining the length of the radius
# reduction: reduction type to use. See super class
# label_smoothing: amount of smoothing to perform on labels
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
# name: Name of the loss instance
# dtype: tf datatype to use for tensor conversions.
# """
# if reg_lambda <= 0:
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
# if C <= 0:
# raise ValueError('c: {0}, should be >= 0'.format(C))
# if radius_constant <= 0:
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
# radius_constant
# ))
#
# self.C = C
# self.dtype = dtype
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
# super(StrongConvexSparseCategoricalCrossentropy, self).__init__(
# reduction=reduction,
# name=name,
# from_logits=from_logits,
# label_smoothing=label_smoothing,
# )
# self.radius_constant = radius_constant
#
# def call(self, y_true, y_pred):
# """Compute loss
#
# Args:
# y_true: Ground truth values.
# y_pred: The predicted values.
#
# Returns:
# Loss values per sample.
# """
# loss = super()
# loss = loss * self.C
# return loss
#
# def radius(self):
# """See super class.
# """
# return self.radius_constant / self.reg_lambda
#
# def gamma(self):
# """See super class.
# """
# return self.reg_lambda
#
# def beta(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda
#
# def lipchitz_constant(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda * self.radius()
#
# def kernel_regularizer(self):
# """
# l2 loss using reg_lambda as the l2 term (as desired). Required for
# this loss function to be strongly convex.
# :return:
# """
# return L1L2(l2=self.reg_lambda)
#
# class StrongConvexSparseCategoricalCrossentropy(
# losses.SparseCategoricalCrossentropy,
# StrongConvexMixin
# ):
# """
# Strong Convex version of SparseCategoricalCrossentropy loss using l2 weight
# regularization.
# """
#
# def __init__(self,
# reg_lambda: float,
# C: float,
# radius_constant: float,
# from_logits: bool = True,
# label_smoothing: float = 0,
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
# name: str = 'binarycrossentropy',
# dtype=tf.float32):
# """
# Args:
# reg_lambda: Weight regularization constant
# C: Penalty parameter C of the loss term
# radius_constant: constant defining the length of the radius
# reduction: reduction type to use. See super class
# label_smoothing: amount of smoothing to perform on labels
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
# name: Name of the loss instance
# dtype: tf datatype to use for tensor conversions.
# """
# if reg_lambda <= 0:
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
# if C <= 0:
# raise ValueError('c: {0}, should be >= 0'.format(C))
# if radius_constant <= 0:
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
# radius_constant
# ))
#
# self.C = C
# self.dtype = dtype
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
# super(StrongConvexHuber, self).__init__(reduction=reduction,
# name=name,
# from_logits=from_logits,
# label_smoothing=label_smoothing,
# )
# self.radius_constant = radius_constant
#
# def call(self, y_true, y_pred):
# """Compute loss
#
# Args:
# y_true: Ground truth values.
# y_pred: The predicted values.
#
# Returns:
# Loss values per sample.
# """
# loss = super()
# loss = loss * self.C
# return loss
#
# def radius(self):
# """See super class.
# """
# return self.radius_constant / self.reg_lambda
#
# def gamma(self):
# """See super class.
# """
# return self.reg_lambda
#
# def beta(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda
#
# def lipchitz_constant(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda * self.radius()
#
# def kernel_regularizer(self):
# """
# l2 loss using reg_lambda as the l2 term (as desired). Required for
# this loss function to be strongly convex.
# :return:
# """
# return L1L2(l2=self.reg_lambda)
#
#
# class StrongConvexCategoricalCrossentropy(
# losses.CategoricalCrossentropy,
# StrongConvexMixin
# ):
# """
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
# regularization.
# """
#
# def __init__(self,
# reg_lambda: float,
# C: float,
# radius_constant: float,
# from_logits: bool = True,
# label_smoothing: float = 0,
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
# name: str = 'binarycrossentropy',
# dtype=tf.float32):
# """
# Args:
# reg_lambda: Weight regularization constant
# C: Penalty parameter C of the loss term
# radius_constant: constant defining the length of the radius
# reduction: reduction type to use. See super class
# label_smoothing: amount of smoothing to perform on labels
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
# name: Name of the loss instance
# dtype: tf datatype to use for tensor conversions.
# """
# if reg_lambda <= 0:
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
# if C <= 0:
# raise ValueError('c: {0}, should be >= 0'.format(C))
# if radius_constant <= 0:
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
# radius_constant
# ))
#
# self.C = C
# self.dtype = dtype
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
# super(StrongConvexHuber, self).__init__(reduction=reduction,
# name=name,
# from_logits=from_logits,
# label_smoothing=label_smoothing,
# )
# self.radius_constant = radius_constant
#
# def call(self, y_true, y_pred):
# """Compute loss
#
# Args:
# y_true: Ground truth values.
# y_pred: The predicted values.
#
# Returns:
# Loss values per sample.
# """
# loss = super()
# loss = loss * self.C
# return loss
#
# def radius(self):
# """See super class.
# """
# return self.radius_constant / self.reg_lambda
#
# def gamma(self):
# """See super class.
# """
# return self.reg_lambda
#
# def beta(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda
#
# def lipchitz_constant(self, class_weight):
# """See super class.
# """
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
# return self.C * max_class_weight + self.reg_lambda * self.radius()
#
# def kernel_regularizer(self):
# """
# l2 loss using reg_lambda as the l2 term (as desired). Required for
# this loss function to be strongly convex.
# :return:
# """
# return L1L2(l2=self.reg_lambda)

View file

@ -24,7 +24,7 @@ from privacy.bolton.losses import StrongConvexMixin
from privacy.bolton.optimizers import Bolton from privacy.bolton.optimizers import Bolton
class BoltonModel(Model): class BoltonModel(Model): # pylint: disable=abstract-method
"""Bolton episilon-delta differential privacy model. """Bolton episilon-delta differential privacy model.
The privacy guarantees are dependent on the noise that is sampled. Please The privacy guarantees are dependent on the noise that is sampled. Please

View file

@ -32,7 +32,7 @@ from privacy.bolton.losses import StrongConvexMixin
from privacy.bolton import optimizers as opt from privacy.bolton import optimizers as opt
class TestModel(Model): class TestModel(Model): # pylint: disable=abstract-method
"""Bolton episilon-delta model. """Bolton episilon-delta model.
Uses 4 key steps to achieve privacy guarantees: Uses 4 key steps to achieve privacy guarantees:
1. Adds noise to weights after training (output perturbation). 1. Adds noise to weights after training (output perturbation).

View file

@ -1,13 +1,29 @@
# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tutorial for bolton module, the model and the optimizer."""
import sys import sys
sys.path.append('..') sys.path.append('..')
import tensorflow as tf import tensorflow as tf # pylint: disable=wrong-import-position
from privacy.bolton import losses from privacy.bolton import losses # pylint: disable=wrong-import-position
from privacy.bolton import models from privacy.bolton import models # pylint: disable=wrong-import-position
# -------
"""First, we will create a binary classification dataset with a single output # First, we will create a binary classification dataset with a single output
dimension. The samples for each label are repeated data points at different # dimension. The samples for each label are repeated data points at different
points in space.""" # points in space.
# -------
# Parameters for dataset # Parameters for dataset
n_samples = 10 n_samples = 10
input_dim = 2 input_dim = 2
@ -22,42 +38,50 @@ print(x.shape, y.shape)
generator = tf.data.Dataset.from_tensor_slices((x, y)) generator = tf.data.Dataset.from_tensor_slices((x, y))
generator = generator.batch(10) generator = generator.batch(10)
generator = generator.shuffle(10) generator = generator.shuffle(10)
"""First, we will explore using the pre - built BoltonModel, which is a thin # -------
wrapper around a Keras Model using a single - layer neural network. # First, we will explore using the pre - built BoltonModel, which is a thin
It automatically uses the Bolton Optimizer which encompasses all the logic # wrapper around a Keras Model using a single - layer neural network.
required for the Bolton Differential Privacy method.""" # It automatically uses the Bolton Optimizer which encompasses all the logic
# required for the Bolton Differential Privacy method.
# -------
bolt = models.BoltonModel(n_outputs) # tell the model how many outputs we have. bolt = models.BoltonModel(n_outputs) # tell the model how many outputs we have.
"""Now, we will pick our optimizer and Strongly Convex Loss function. The loss # -------
must extend from StrongConvexMixin and implement the associated methods.Some # Now, we will pick our optimizer and Strongly Convex Loss function. The loss
existing loss functions are pre - implemented in bolton.loss""" # must extend from StrongConvexMixin and implement the associated methods.Some
# existing loss functions are pre - implemented in bolton.loss
# -------
optimizer = tf.optimizers.SGD() optimizer = tf.optimizers.SGD()
reg_lambda = 1 reg_lambda = 1
C = 1 C = 1
radius_constant = 1 radius_constant = 1
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
"""For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy # -------
to be 1; these are all tunable and their impact can be read in losses. # For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
StrongConvexBinaryCrossentropy.We then compile the model with the chosen # to be 1; these are all tunable and their impact can be read in losses.
optimizer and loss, which will automatically wrap the chosen optimizer with the # StrongConvexBinaryCrossentropy.We then compile the model with the chosen
Bolton Optimizer, ensuring the required components function as required for # optimizer and loss, which will automatically wrap the chosen optimizer with the
privacy guarantees.""" # Bolton Optimizer, ensuring the required components function as required for
# privacy guarantees.
# -------
bolt.compile(optimizer, loss) bolt.compile(optimizer, loss)
"""To fit the model, the optimizer will require additional information about # -------
the dataset and model.These parameters are: # To fit the model, the optimizer will require additional information about
1. the class_weights used # the dataset and model.These parameters are:
2. the number of samples in the dataset # 1. the class_weights used
3. the batch size which the model will try to infer, if possible. If not, you # 2. the number of samples in the dataset
will be required to pass these explicitly to the fit method. # 3. the batch size which the model will try to infer, if possible. If not, you
# will be required to pass these explicitly to the fit method.
As well, there are two privacy parameters than can be altered: #
1. epsilon, a float # As well, there are two privacy parameters than can be altered:
2. noise_distribution, a valid string indicating the distriution to use (must be # 1. epsilon, a float
implemented) # 2. noise_distribution, a valid string indicating the distriution to use (must be
# implemented)
The BoltonModel offers a helper method,.calculate_class_weight to aid in #
class_weight calculation.""" # The BoltonModel offers a helper method,.calculate_class_weight to aid in
# class_weight calculation.
# required parameters # required parameters
class_weight = None # default, use .calculate_class_weight to specify other values # -------
class_weight = None # default, use .calculate_class_weight for other values
batch_size = None # default, if it cannot be inferred, specify this batch_size = None # default, if it cannot be inferred, specify this
n_samples = None # default, if it cannot be iferred, specify this n_samples = None # default, if it cannot be iferred, specify this
# privacy parameters # privacy parameters
@ -72,13 +96,15 @@ bolt.fit(x,
n_samples=n_samples, n_samples=n_samples,
noise_distribution=noise_distribution, noise_distribution=noise_distribution,
epochs=2) epochs=2)
"""We may also train a generator object, or try different optimizers and loss # -------
functions. Below, we will see that we must pass the number of samples as the fit # We may also train a generator object, or try different optimizers and loss
method is unable to infer it for a generator.""" # functions. Below, we will see that we must pass the number of samples as the
# fit method is unable to infer it for a generator.
# -------
optimizer2 = tf.optimizers.Adam() optimizer2 = tf.optimizers.Adam()
bolt.compile(optimizer2, loss) bolt.compile(optimizer2, loss)
# required parameters # required parameters
class_weight = None # default, use .calculate_class_weight to specify other values class_weight = None # default, use .calculate_class_weight for other values
batch_size = None # default, if it cannot be inferred, specify this batch_size = None # default, if it cannot be inferred, specify this
n_samples = None # default, if it cannot be iferred, specify this n_samples = None # default, if it cannot be iferred, specify this
# privacy parameters # privacy parameters
@ -95,7 +121,9 @@ try:
) )
except ValueError as e: except ValueError as e:
print(e) print(e)
"""And now, re running with the parameter set.""" # -------
# And now, re running with the parameter set.
# -------
n_samples = 20 n_samples = 20
bolt.fit(generator, bolt.fit(generator,
epsilon=epsilon, epsilon=epsilon,
@ -105,51 +133,56 @@ bolt.fit(generator,
noise_distribution=noise_distribution, noise_distribution=noise_distribution,
verbose=0 verbose=0
) )
"""You don't have to use the bolton model to use the Bolton method. # -------
There are only a few requirements: # You don't have to use the bolton model to use the Bolton method.
1. make sure any requirements from the loss are implemented in the model. # There are only a few requirements:
2. instantiate the optimizer and use it as a context around your fit operation. # 1. make sure any requirements from the loss are implemented in the model.
""" # 2. instantiate the optimizer and use it as a context around the fit operation.
# -------
from privacy.bolton.optimizers import Bolton # -------------------- Part 2, using the Optimizer
from privacy.bolton.optimizers import Bolton # pylint: disable=wrong-import-position
"""Here, we create our own model and setup the Bolton optimizer.""" # -------
# Here, we create our own model and setup the Bolton optimizer.
class TestModel(tf.keras.Model): # -------
def __init__(self, reg_layer, n_outputs=1): class TestModel(tf.keras.Model): # pylint: disable=abstract-method
def __init__(self, reg_layer, number_of_outputs=1):
super(TestModel, self).__init__(name='test') super(TestModel, self).__init__(name='test')
self.output_layer = tf.keras.layers.Dense(n_outputs, self.output_layer = tf.keras.layers.Dense(number_of_outputs,
kernel_regularizer=reg_layer kernel_regularizer=reg_layer
) )
def call(self, inputs): def call(self, inputs): # pylint: disable=arguments-differ
return self.output_layer(inputs) return self.output_layer(inputs)
optimizer = tf.optimizers.SGD() optimizer = tf.optimizers.SGD()
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
optimizer = Bolton(optimizer, loss) optimizer = Bolton(optimizer, loss)
"""Now, we instantiate our model and check for 1. Since our loss requires L2 # -------
regularization over the kernel, we will pass it to the model.""" # Now, we instantiate our model and check for 1. Since our loss requires L2
# regularization over the kernel, we will pass it to the model.
# -------
n_outputs = 1 # parameter for model and optimizer context. n_outputs = 1 # parameter for model and optimizer context.
test_model = TestModel(loss.kernel_regularizer(), n_outputs) test_model = TestModel(loss.kernel_regularizer(), n_outputs)
test_model.compile(optimizer, loss) test_model.compile(optimizer, loss)
"""We comply with 2., and use the Bolton Optimizer as a context around the fit # -------
method.""" # We comply with 2., and use the Bolton Optimizer as a context around the fit
# method.
# -------
# parameters for context # parameters for context
noise_distribution = 'laplace' noise_distribution = 'laplace'
epsilon = 2 epsilon = 2
class_weights = 1 # Previously, the fit method auto-detected the class_weights. class_weights = 1 # Previously, the fit method auto-detected the class_weights.
# Here, we need to pass the class_weights explicitly. 1 is the equivalent of None. # Here, we need to pass the class_weights explicitly. 1 is the same as None.
n_samples = 20 n_samples = 20
batch_size = 5 batch_size = 5
with optimizer( with optimizer(
noise_distribution=noise_distribution, noise_distribution=noise_distribution,
epsilon=epsilon, epsilon=epsilon,
layers=test_model.layers, layers=test_model.layers,
class_weights=class_weights, class_weights=class_weights,
n_samples=n_samples, n_samples=n_samples,
batch_size=batch_size batch_size=batch_size
) as _: ) as _:
test_model.fit(x, y, batch_size=batch_size, epochs=2) test_model.fit(x, y, batch_size=batch_size, epochs=2)