Add test to ensure DP optimizers work with tf.estimator Estimators.
PiperOrigin-RevId: 228920704
This commit is contained in:
parent
22c8b76c04
commit
c30f6d776e
1 changed files with 42 additions and 7 deletions
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2018, The TensorFlow Authors.
|
# Copyright 2019, The TensorFlow Authors.
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -24,11 +24,6 @@ import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import dp_optimizer
|
from privacy.optimizers import dp_optimizer
|
||||||
|
|
||||||
try:
|
|
||||||
xrange
|
|
||||||
except NameError:
|
|
||||||
xrange = range
|
|
||||||
|
|
||||||
|
|
||||||
def loss(val0, val1):
|
def loss(val0, val1):
|
||||||
"""Loss function that is minimized at the mean of the input points."""
|
"""Loss function that is minimized at the mean of the input points."""
|
||||||
|
@ -117,7 +112,7 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
gradient_op = opt.compute_gradients(loss(data0, var0), [var0])
|
||||||
grads = []
|
grads = []
|
||||||
for _ in xrange(1000):
|
for _ in range(1000):
|
||||||
grads_and_vars = sess.run(gradient_op)
|
grads_and_vars = sess.run(gradient_op)
|
||||||
grads.append(grads_and_vars[0][0])
|
grads.append(grads_and_vars[0][0])
|
||||||
|
|
||||||
|
@ -139,5 +134,45 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
'make_optimizer_class() does not interfere with overridden version.',
|
'make_optimizer_class() does not interfere with overridden version.',
|
||||||
'SimpleOptimizer')
|
'SimpleOptimizer')
|
||||||
|
|
||||||
|
def testEstimator(self):
|
||||||
|
"""Tests that DP optimizers work with tf.estimator."""
|
||||||
|
def linear_model_fn(features, labels, mode):
|
||||||
|
preds = tf.keras.layers.Dense(
|
||||||
|
1, activation='linear', name='dense').apply(features['x'])
|
||||||
|
|
||||||
|
vector_loss = tf.squared_difference(labels, preds)
|
||||||
|
scalar_loss = tf.reduce_mean(vector_loss)
|
||||||
|
optimizer = dp_optimizer.DPGradientDescentOptimizer(
|
||||||
|
l2_norm_clip=1.0,
|
||||||
|
noise_multiplier=0.0,
|
||||||
|
num_microbatches=1,
|
||||||
|
learning_rate=1.0)
|
||||||
|
global_step = tf.train.get_global_step()
|
||||||
|
train_op = optimizer.minimize(loss=vector_loss, global_step=global_step)
|
||||||
|
return tf.estimator.EstimatorSpec(
|
||||||
|
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||||
|
|
||||||
|
linear_regressor = tf.estimator.Estimator(model_fn=linear_model_fn)
|
||||||
|
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
|
||||||
|
true_bias = 6.0
|
||||||
|
train_data = np.random.normal(scale=3.0, size=(200, 4)).astype(np.float32)
|
||||||
|
|
||||||
|
train_labels = np.matmul(train_data,
|
||||||
|
true_weights) + true_bias + np.random.normal(
|
||||||
|
scale=0.1, size=(200, 1)).astype(np.float32)
|
||||||
|
|
||||||
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||||
|
x={'x': train_data},
|
||||||
|
y=train_labels,
|
||||||
|
batch_size=20,
|
||||||
|
num_epochs=10,
|
||||||
|
shuffle=True)
|
||||||
|
linear_regressor.train(input_fn=train_input_fn, steps=100)
|
||||||
|
self.assertAllClose(
|
||||||
|
linear_regressor.get_variable_value('dense/kernel'),
|
||||||
|
true_weights,
|
||||||
|
atol=1.0)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
tf.test.main()
|
tf.test.main()
|
||||||
|
|
Loading…
Reference in a new issue