Add GaussianSumQuery and express GaussianAverageQuery in terms of it.

Also:
1. Add unit tests for both types of query.
2. Add function "get_query_result" to PrivateQuery. (The utility of having this function is made clear in the test class, where the function _run_query operates on either GaussianSum- or GaussianAverageQueries.)
PiperOrigin-RevId: 225609398
This commit is contained in:
A. Unique TensorFlower 2018-12-14 14:57:07 -08:00 committed by Nicolas Papernot
parent 0af76c7b3d
commit ceee90b1ac
5 changed files with 266 additions and 23 deletions

View file

@ -95,8 +95,9 @@ class DPAdamOptimizer(tf.train.AdamOptimizer):
grads, _ = zip(*super(DPAdamOptimizer, self).compute_gradients( grads, _ = zip(*super(DPAdamOptimizer, self).compute_gradients(
tf.gather(microbatches_losses, [i]), var_list, gate_gradients, tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
aggregation_method, colocate_gradients_with_ops, grad_loss)) aggregation_method, colocate_gradients_with_ops, grad_loss))
grads_list = list(grads)
sample_state = self._privacy_helper.accumulate_record( sample_state = self._privacy_helper.accumulate_record(
sample_params, sample_state, grads) sample_params, sample_state, grads_list)
return [tf.add(i, 1), sample_state] return [tf.add(i, 1), sample_state]
i = tf.constant(0) i = tf.constant(0)

View file

@ -80,8 +80,9 @@ class DPGradientDescentOptimizer(tf.train.GradientDescentOptimizer):
grads, _ = zip(*super(DPGradientDescentOptimizer, self).compute_gradients( grads, _ = zip(*super(DPGradientDescentOptimizer, self).compute_gradients(
tf.gather(microbatches_losses, [i]), var_list, gate_gradients, tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
aggregation_method, colocate_gradients_with_ops, grad_loss)) aggregation_method, colocate_gradients_with_ops, grad_loss))
grads_list = list(grads)
sample_state = self._privacy_helper.accumulate_record( sample_state = self._privacy_helper.accumulate_record(
sample_params, sample_state, grads) sample_params, sample_state, grads_list)
return [tf.add(i, 1), sample_state] return [tf.add(i, 1), sample_state]
i = tf.constant(0) i = tf.constant(0)

View file

@ -25,28 +25,33 @@ import tensorflow as tf
from privacy.optimizers import private_queries from privacy.optimizers import private_queries
nest = tf.contrib.framework.nest
class GaussianAverageQuery(private_queries.PrivateAverageQuery):
"""Implements PrivateQuery interface for Gaussian average queries.
Accumulates clipped vectors, then adds Gaussian noise to the average. class GaussianSumQuery(private_queries.PrivateSumQuery):
"""Implements PrivateQuery interface for Gaussian sum queries.
Accumulates clipped vectors, then adds Gaussian noise to the sum.
""" """
# pylint: disable=invalid-name # pylint: disable=invalid-name
_GlobalState = collections.namedtuple( _GlobalState = collections.namedtuple(
'_GlobalState', ['l2_norm_clip', 'stddev', 'denominator']) '_GlobalState', ['l2_norm_clip', 'stddev'])
def __init__(self, l2_norm_clip, stddev, denominator): def __init__(self, l2_norm_clip, stddev):
"""Initializes the GaussianAverageQuery.""" """Initializes the GaussianSumQuery.
Args:
l2_norm_clip: The clipping norm to apply to the global norm of each
record.
stddev: The stddev of the noise added to the sum.
"""
self._l2_norm_clip = l2_norm_clip self._l2_norm_clip = l2_norm_clip
self._stddev = stddev self._stddev = stddev
self._denominator = denominator
def initial_global_state(self): def initial_global_state(self):
"""Returns the initial global state for the PrivacyHelper.""" """Returns the initial global state for the GaussianSumQuery."""
return self._GlobalState( return self._GlobalState(float(self._l2_norm_clip), float(self._stddev))
float(self._l2_norm_clip), float(self._stddev),
float(self._denominator))
def derive_sample_params(self, global_state): def derive_sample_params(self, global_state):
"""Given the global state, derives parameters to use for the next sample. """Given the global state, derives parameters to use for the next sample.
@ -70,7 +75,7 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
Returns: An initial sample state. Returns: An initial sample state.
""" """
del global_state # unused. del global_state # unused.
return tf.contrib.framework.nest.map_structure(tf.zeros_like, tensors) return nest.map_structure(tf.zeros_like, tensors)
def accumulate_record(self, params, sample_state, record): def accumulate_record(self, params, sample_state, record):
"""Accumulates a single record into the sample state. """Accumulates a single record into the sample state.
@ -84,9 +89,93 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
The updated sample state. The updated sample state.
""" """
l2_norm_clip = params l2_norm_clip = params
clipped, _ = tf.clip_by_global_norm(record, l2_norm_clip) record_as_list = nest.flatten(record)
return tf.contrib.framework.nest.map_structure(tf.add, sample_state, clipped_as_list, _ = tf.clip_by_global_norm(record_as_list, l2_norm_clip)
clipped) clipped = nest.pack_sequence_as(record, clipped_as_list)
return nest.map_structure(tf.add, sample_state, clipped)
def get_noised_sum(self, sample_state, global_state):
"""Gets noised sum after all records of sample have been accumulated.
Args:
sample_state: The sample state after all records have been accumulated.
global_state: The global state.
Returns:
A tuple (estimate, new_global_state) where "estimate" is the estimated
sum of the records and "new_global_state" is the updated global state.
"""
def add_noise(v):
return v + tf.random_normal(tf.shape(v), stddev=global_state.stddev)
return nest.map_structure(add_noise, sample_state), global_state
class GaussianAverageQuery(private_queries.PrivateAverageQuery):
"""Implements PrivateQuery interface for Gaussian average queries.
Accumulates clipped vectors, adds Gaussian noise, and normalizes.
"""
# pylint: disable=invalid-name
_GlobalState = collections.namedtuple(
'_GlobalState', ['sum_state', 'denominator'])
def __init__(self, l2_norm_clip, sum_stddev, denominator):
"""Initializes the GaussianAverageQuery.
Args:
l2_norm_clip: The clipping norm to apply to the global norm of each
record.
sum_stddev: The stddev of the noise added to the sum (before
normalization).
denominator: The normalization constant (applied after noise is added to
the sum).
"""
self._sum_query = GaussianSumQuery(l2_norm_clip, sum_stddev)
self._denominator = denominator
def initial_global_state(self):
"""Returns the initial global state for the GaussianAverageQuery."""
sum_global_state = self._sum_query.initial_global_state()
return self._GlobalState(sum_global_state, float(self._denominator))
def derive_sample_params(self, global_state):
"""Given the global state, derives parameters to use for the next sample.
Args:
global_state: The current global state.
Returns:
Parameters to use to process records in the next sample.
"""
return self._sum_query.derive_sample_params(global_state.sum_state)
def initial_sample_state(self, global_state, tensors):
"""Returns an initial state to use for the next sample.
Args:
global_state: The current global state.
tensors: A structure of tensors used as a template to create the initial
sample state.
Returns: An initial sample state.
"""
# GaussianAverageQuery has no state beyond the sum state.
return self._sum_query.initial_sample_state(global_state.sum_state, tensors)
def accumulate_record(self, params, sample_state, record):
"""Accumulates a single record into the sample state.
Args:
params: The parameters for the sample.
sample_state: The current sample state.
record: The record to accumulate.
Returns:
The updated sample state.
"""
return self._sum_query.accumulate_record(params, sample_state, record)
def get_noised_average(self, sample_state, global_state): def get_noised_average(self, sample_state, global_state):
"""Gets noised average after all records of sample have been accumulated. """Gets noised average after all records of sample have been accumulated.
@ -99,10 +188,11 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
A tuple (estimate, new_global_state) where "estimate" is the estimated A tuple (estimate, new_global_state) where "estimate" is the estimated
average of the records and "new_global_state" is the updated global state. average of the records and "new_global_state" is the updated global state.
""" """
def noised_average(v): noised_sum, new_sum_global_state = self._sum_query.get_noised_sum(
return tf.truediv( sample_state, global_state.sum_state)
v + tf.random_normal(tf.shape(v), stddev=self._stddev), new_global_state = self._GlobalState(
global_state.denominator) new_sum_global_state, global_state.denominator)
def normalize(v):
return tf.truediv(v, global_state.denominator)
return (tf.contrib.framework.nest.map_structure(noised_average, return nest.map_structure(normalize, noised_sum), new_global_state
sample_state), global_state)

View file

@ -0,0 +1,111 @@
# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for GaussianAverageQuery."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from privacy.optimizers import gaussian_average_query
class GaussianAverageQueryTest(tf.test.TestCase):
def _run_query(self, query, *records):
"""Executes query on the given set of records and returns the result."""
global_state = query.initial_global_state()
params = query.derive_sample_params(global_state)
sample_state = query.initial_sample_state(global_state, records[0])
for record in records:
sample_state = query.accumulate_record(params, sample_state, record)
result, _ = query.get_query_result(sample_state, global_state)
return result
def test_gaussian_sum_no_clip_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([2.0, 0.0])
record2 = tf.constant([-1.0, 1.0])
query = gaussian_average_query.GaussianSumQuery(
l2_norm_clip=10.0, stddev=0.0)
query_result = self._run_query(query, record1, record2)
result = sess.run(query_result)
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
def test_gaussian_sum_with_clip_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
record2 = tf.constant([4.0, -3.0]) # Not clipped.
query = gaussian_average_query.GaussianSumQuery(
l2_norm_clip=5.0, stddev=0.0)
query_result = self._run_query(query, record1, record2)
result = sess.run(query_result)
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
def test_gaussian_sum_with_noise(self):
with self.cached_session() as sess:
record1, record2 = 2.71828, 3.14159
stddev = 1.0
query = gaussian_average_query.GaussianSumQuery(
l2_norm_clip=5.0, stddev=stddev)
query_result = self._run_query(query, record1, record2)
noised_sums = []
for _ in xrange(1000):
noised_sums.append(sess.run(query_result))
result_stddev = np.std(noised_sums)
self.assertNear(result_stddev, stddev, 0.1)
def test_gaussian_average_no_noise(self):
with self.cached_session() as sess:
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
query = gaussian_average_query.GaussianAverageQuery(
l2_norm_clip=3.0, sum_stddev=0.0, denominator=2.0)
query_result = self._run_query(query, record1, record2)
result = sess.run(query_result)
expected_average = [1.0, 1.0]
self.assertAllClose(result, expected_average)
def test_gaussian_average_with_noise(self):
with self.cached_session() as sess:
record1, record2 = 2.71828, 3.14159
sum_stddev = 1.0
denominator = 2.0
query = gaussian_average_query.GaussianAverageQuery(
l2_norm_clip=5.0, sum_stddev=sum_stddev, denominator=denominator)
query_result = self._run_query(query, record1, record2)
noised_averages = []
for _ in xrange(1000):
noised_averages.append(sess.run(query_result))
result_stddev = np.std(noised_averages)
avg_stddev = sum_stddev / denominator
self.assertNear(result_stddev, avg_stddev, 0.1)
if __name__ == '__main__':
tf.test.main()

View file

@ -71,6 +71,42 @@ class PrivateQuery(object):
""" """
pass pass
@abc.abstractmethod
def get_query_result(self, sample_state, global_state):
"""Gets query result after all records of sample have been accumulated.
Args:
sample_state: The sample state after all records have been accumulated.
global_state: The global state.
Returns:
A tuple (result, new_global_state) where "result" is the result of the
query and "new_global_state" is the updated global state.
"""
pass
class PrivateSumQuery(PrivateQuery):
"""Interface for differentially private mechanisms to compute a sum."""
@abc.abstractmethod
def get_noised_sum(self, sample_state, global_state):
"""Gets estimate of sum after all records of sample have been accumulated.
Args:
sample_state: The sample state after all records have been accumulated.
global_state: The global state.
Returns:
A tuple (estimate, new_global_state) where "estimate" is the estimated
sum of the records and "new_global_state" is the updated global state.
"""
pass
def get_query_result(self, sample_state, global_state):
"""Delegates to get_noised_sum."""
return self.get_noised_sum(sample_state, global_state)
class PrivateAverageQuery(PrivateQuery): class PrivateAverageQuery(PrivateQuery):
"""Interface for differentially private mechanisms to compute an average.""" """Interface for differentially private mechanisms to compute an average."""
@ -88,3 +124,7 @@ class PrivateAverageQuery(PrivateQuery):
average of the records and "new_global_state" is the updated global state. average of the records and "new_global_state" is the updated global state.
""" """
pass pass
def get_query_result(self, sample_state, global_state):
"""Delegates to get_noised_average."""
return self.get_noised_average(sample_state, global_state)