Add GaussianSumQuery and express GaussianAverageQuery in terms of it.
Also: 1. Add unit tests for both types of query. 2. Add function "get_query_result" to PrivateQuery. (The utility of having this function is made clear in the test class, where the function _run_query operates on either GaussianSum- or GaussianAverageQueries.) PiperOrigin-RevId: 225609398
This commit is contained in:
parent
0af76c7b3d
commit
ceee90b1ac
5 changed files with 266 additions and 23 deletions
|
@ -95,8 +95,9 @@ class DPAdamOptimizer(tf.train.AdamOptimizer):
|
||||||
grads, _ = zip(*super(DPAdamOptimizer, self).compute_gradients(
|
grads, _ = zip(*super(DPAdamOptimizer, self).compute_gradients(
|
||||||
tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
|
tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
|
||||||
aggregation_method, colocate_gradients_with_ops, grad_loss))
|
aggregation_method, colocate_gradients_with_ops, grad_loss))
|
||||||
|
grads_list = list(grads)
|
||||||
sample_state = self._privacy_helper.accumulate_record(
|
sample_state = self._privacy_helper.accumulate_record(
|
||||||
sample_params, sample_state, grads)
|
sample_params, sample_state, grads_list)
|
||||||
return [tf.add(i, 1), sample_state]
|
return [tf.add(i, 1), sample_state]
|
||||||
|
|
||||||
i = tf.constant(0)
|
i = tf.constant(0)
|
||||||
|
|
|
@ -80,8 +80,9 @@ class DPGradientDescentOptimizer(tf.train.GradientDescentOptimizer):
|
||||||
grads, _ = zip(*super(DPGradientDescentOptimizer, self).compute_gradients(
|
grads, _ = zip(*super(DPGradientDescentOptimizer, self).compute_gradients(
|
||||||
tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
|
tf.gather(microbatches_losses, [i]), var_list, gate_gradients,
|
||||||
aggregation_method, colocate_gradients_with_ops, grad_loss))
|
aggregation_method, colocate_gradients_with_ops, grad_loss))
|
||||||
|
grads_list = list(grads)
|
||||||
sample_state = self._privacy_helper.accumulate_record(
|
sample_state = self._privacy_helper.accumulate_record(
|
||||||
sample_params, sample_state, grads)
|
sample_params, sample_state, grads_list)
|
||||||
return [tf.add(i, 1), sample_state]
|
return [tf.add(i, 1), sample_state]
|
||||||
|
|
||||||
i = tf.constant(0)
|
i = tf.constant(0)
|
||||||
|
|
|
@ -25,28 +25,33 @@ import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import private_queries
|
from privacy.optimizers import private_queries
|
||||||
|
|
||||||
|
nest = tf.contrib.framework.nest
|
||||||
|
|
||||||
class GaussianAverageQuery(private_queries.PrivateAverageQuery):
|
|
||||||
"""Implements PrivateQuery interface for Gaussian average queries.
|
|
||||||
|
|
||||||
Accumulates clipped vectors, then adds Gaussian noise to the average.
|
class GaussianSumQuery(private_queries.PrivateSumQuery):
|
||||||
|
"""Implements PrivateQuery interface for Gaussian sum queries.
|
||||||
|
|
||||||
|
Accumulates clipped vectors, then adds Gaussian noise to the sum.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# pylint: disable=invalid-name
|
# pylint: disable=invalid-name
|
||||||
_GlobalState = collections.namedtuple(
|
_GlobalState = collections.namedtuple(
|
||||||
'_GlobalState', ['l2_norm_clip', 'stddev', 'denominator'])
|
'_GlobalState', ['l2_norm_clip', 'stddev'])
|
||||||
|
|
||||||
def __init__(self, l2_norm_clip, stddev, denominator):
|
def __init__(self, l2_norm_clip, stddev):
|
||||||
"""Initializes the GaussianAverageQuery."""
|
"""Initializes the GaussianSumQuery.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
l2_norm_clip: The clipping norm to apply to the global norm of each
|
||||||
|
record.
|
||||||
|
stddev: The stddev of the noise added to the sum.
|
||||||
|
"""
|
||||||
self._l2_norm_clip = l2_norm_clip
|
self._l2_norm_clip = l2_norm_clip
|
||||||
self._stddev = stddev
|
self._stddev = stddev
|
||||||
self._denominator = denominator
|
|
||||||
|
|
||||||
def initial_global_state(self):
|
def initial_global_state(self):
|
||||||
"""Returns the initial global state for the PrivacyHelper."""
|
"""Returns the initial global state for the GaussianSumQuery."""
|
||||||
return self._GlobalState(
|
return self._GlobalState(float(self._l2_norm_clip), float(self._stddev))
|
||||||
float(self._l2_norm_clip), float(self._stddev),
|
|
||||||
float(self._denominator))
|
|
||||||
|
|
||||||
def derive_sample_params(self, global_state):
|
def derive_sample_params(self, global_state):
|
||||||
"""Given the global state, derives parameters to use for the next sample.
|
"""Given the global state, derives parameters to use for the next sample.
|
||||||
|
@ -70,7 +75,7 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
|
||||||
Returns: An initial sample state.
|
Returns: An initial sample state.
|
||||||
"""
|
"""
|
||||||
del global_state # unused.
|
del global_state # unused.
|
||||||
return tf.contrib.framework.nest.map_structure(tf.zeros_like, tensors)
|
return nest.map_structure(tf.zeros_like, tensors)
|
||||||
|
|
||||||
def accumulate_record(self, params, sample_state, record):
|
def accumulate_record(self, params, sample_state, record):
|
||||||
"""Accumulates a single record into the sample state.
|
"""Accumulates a single record into the sample state.
|
||||||
|
@ -84,9 +89,93 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
|
||||||
The updated sample state.
|
The updated sample state.
|
||||||
"""
|
"""
|
||||||
l2_norm_clip = params
|
l2_norm_clip = params
|
||||||
clipped, _ = tf.clip_by_global_norm(record, l2_norm_clip)
|
record_as_list = nest.flatten(record)
|
||||||
return tf.contrib.framework.nest.map_structure(tf.add, sample_state,
|
clipped_as_list, _ = tf.clip_by_global_norm(record_as_list, l2_norm_clip)
|
||||||
clipped)
|
clipped = nest.pack_sequence_as(record, clipped_as_list)
|
||||||
|
return nest.map_structure(tf.add, sample_state, clipped)
|
||||||
|
|
||||||
|
def get_noised_sum(self, sample_state, global_state):
|
||||||
|
"""Gets noised sum after all records of sample have been accumulated.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: The sample state after all records have been accumulated.
|
||||||
|
global_state: The global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
||||||
|
sum of the records and "new_global_state" is the updated global state.
|
||||||
|
"""
|
||||||
|
def add_noise(v):
|
||||||
|
return v + tf.random_normal(tf.shape(v), stddev=global_state.stddev)
|
||||||
|
|
||||||
|
return nest.map_structure(add_noise, sample_state), global_state
|
||||||
|
|
||||||
|
|
||||||
|
class GaussianAverageQuery(private_queries.PrivateAverageQuery):
|
||||||
|
"""Implements PrivateQuery interface for Gaussian average queries.
|
||||||
|
|
||||||
|
Accumulates clipped vectors, adds Gaussian noise, and normalizes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# pylint: disable=invalid-name
|
||||||
|
_GlobalState = collections.namedtuple(
|
||||||
|
'_GlobalState', ['sum_state', 'denominator'])
|
||||||
|
|
||||||
|
def __init__(self, l2_norm_clip, sum_stddev, denominator):
|
||||||
|
"""Initializes the GaussianAverageQuery.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
l2_norm_clip: The clipping norm to apply to the global norm of each
|
||||||
|
record.
|
||||||
|
sum_stddev: The stddev of the noise added to the sum (before
|
||||||
|
normalization).
|
||||||
|
denominator: The normalization constant (applied after noise is added to
|
||||||
|
the sum).
|
||||||
|
"""
|
||||||
|
self._sum_query = GaussianSumQuery(l2_norm_clip, sum_stddev)
|
||||||
|
self._denominator = denominator
|
||||||
|
|
||||||
|
def initial_global_state(self):
|
||||||
|
"""Returns the initial global state for the GaussianAverageQuery."""
|
||||||
|
sum_global_state = self._sum_query.initial_global_state()
|
||||||
|
return self._GlobalState(sum_global_state, float(self._denominator))
|
||||||
|
|
||||||
|
def derive_sample_params(self, global_state):
|
||||||
|
"""Given the global state, derives parameters to use for the next sample.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_state: The current global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Parameters to use to process records in the next sample.
|
||||||
|
"""
|
||||||
|
return self._sum_query.derive_sample_params(global_state.sum_state)
|
||||||
|
|
||||||
|
def initial_sample_state(self, global_state, tensors):
|
||||||
|
"""Returns an initial state to use for the next sample.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_state: The current global state.
|
||||||
|
tensors: A structure of tensors used as a template to create the initial
|
||||||
|
sample state.
|
||||||
|
|
||||||
|
Returns: An initial sample state.
|
||||||
|
"""
|
||||||
|
# GaussianAverageQuery has no state beyond the sum state.
|
||||||
|
return self._sum_query.initial_sample_state(global_state.sum_state, tensors)
|
||||||
|
|
||||||
|
def accumulate_record(self, params, sample_state, record):
|
||||||
|
"""Accumulates a single record into the sample state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params: The parameters for the sample.
|
||||||
|
sample_state: The current sample state.
|
||||||
|
record: The record to accumulate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The updated sample state.
|
||||||
|
"""
|
||||||
|
return self._sum_query.accumulate_record(params, sample_state, record)
|
||||||
|
|
||||||
def get_noised_average(self, sample_state, global_state):
|
def get_noised_average(self, sample_state, global_state):
|
||||||
"""Gets noised average after all records of sample have been accumulated.
|
"""Gets noised average after all records of sample have been accumulated.
|
||||||
|
@ -99,10 +188,11 @@ class GaussianAverageQuery(private_queries.PrivateAverageQuery):
|
||||||
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
||||||
average of the records and "new_global_state" is the updated global state.
|
average of the records and "new_global_state" is the updated global state.
|
||||||
"""
|
"""
|
||||||
def noised_average(v):
|
noised_sum, new_sum_global_state = self._sum_query.get_noised_sum(
|
||||||
return tf.truediv(
|
sample_state, global_state.sum_state)
|
||||||
v + tf.random_normal(tf.shape(v), stddev=self._stddev),
|
new_global_state = self._GlobalState(
|
||||||
global_state.denominator)
|
new_sum_global_state, global_state.denominator)
|
||||||
|
def normalize(v):
|
||||||
|
return tf.truediv(v, global_state.denominator)
|
||||||
|
|
||||||
return (tf.contrib.framework.nest.map_structure(noised_average,
|
return nest.map_structure(normalize, noised_sum), new_global_state
|
||||||
sample_state), global_state)
|
|
||||||
|
|
111
privacy/optimizers/gaussian_average_query_test.py
Normal file
111
privacy/optimizers/gaussian_average_query_test.py
Normal file
|
@ -0,0 +1,111 @@
|
||||||
|
# Copyright 2018, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Tests for GaussianAverageQuery."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from privacy.optimizers import gaussian_average_query
|
||||||
|
|
||||||
|
|
||||||
|
class GaussianAverageQueryTest(tf.test.TestCase):
|
||||||
|
|
||||||
|
def _run_query(self, query, *records):
|
||||||
|
"""Executes query on the given set of records and returns the result."""
|
||||||
|
global_state = query.initial_global_state()
|
||||||
|
params = query.derive_sample_params(global_state)
|
||||||
|
sample_state = query.initial_sample_state(global_state, records[0])
|
||||||
|
for record in records:
|
||||||
|
sample_state = query.accumulate_record(params, sample_state, record)
|
||||||
|
result, _ = query.get_query_result(sample_state, global_state)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def test_gaussian_sum_no_clip_no_noise(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1 = tf.constant([2.0, 0.0])
|
||||||
|
record2 = tf.constant([-1.0, 1.0])
|
||||||
|
|
||||||
|
query = gaussian_average_query.GaussianSumQuery(
|
||||||
|
l2_norm_clip=10.0, stddev=0.0)
|
||||||
|
query_result = self._run_query(query, record1, record2)
|
||||||
|
result = sess.run(query_result)
|
||||||
|
expected = [1.0, 1.0]
|
||||||
|
self.assertAllClose(result, expected)
|
||||||
|
|
||||||
|
def test_gaussian_sum_with_clip_no_noise(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||||
|
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||||
|
|
||||||
|
query = gaussian_average_query.GaussianSumQuery(
|
||||||
|
l2_norm_clip=5.0, stddev=0.0)
|
||||||
|
query_result = self._run_query(query, record1, record2)
|
||||||
|
result = sess.run(query_result)
|
||||||
|
expected = [1.0, 1.0]
|
||||||
|
self.assertAllClose(result, expected)
|
||||||
|
|
||||||
|
def test_gaussian_sum_with_noise(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1, record2 = 2.71828, 3.14159
|
||||||
|
stddev = 1.0
|
||||||
|
|
||||||
|
query = gaussian_average_query.GaussianSumQuery(
|
||||||
|
l2_norm_clip=5.0, stddev=stddev)
|
||||||
|
query_result = self._run_query(query, record1, record2)
|
||||||
|
|
||||||
|
noised_sums = []
|
||||||
|
for _ in xrange(1000):
|
||||||
|
noised_sums.append(sess.run(query_result))
|
||||||
|
|
||||||
|
result_stddev = np.std(noised_sums)
|
||||||
|
self.assertNear(result_stddev, stddev, 0.1)
|
||||||
|
|
||||||
|
def test_gaussian_average_no_noise(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
|
||||||
|
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
|
||||||
|
|
||||||
|
query = gaussian_average_query.GaussianAverageQuery(
|
||||||
|
l2_norm_clip=3.0, sum_stddev=0.0, denominator=2.0)
|
||||||
|
query_result = self._run_query(query, record1, record2)
|
||||||
|
result = sess.run(query_result)
|
||||||
|
expected_average = [1.0, 1.0]
|
||||||
|
self.assertAllClose(result, expected_average)
|
||||||
|
|
||||||
|
def test_gaussian_average_with_noise(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1, record2 = 2.71828, 3.14159
|
||||||
|
sum_stddev = 1.0
|
||||||
|
denominator = 2.0
|
||||||
|
|
||||||
|
query = gaussian_average_query.GaussianAverageQuery(
|
||||||
|
l2_norm_clip=5.0, sum_stddev=sum_stddev, denominator=denominator)
|
||||||
|
query_result = self._run_query(query, record1, record2)
|
||||||
|
|
||||||
|
noised_averages = []
|
||||||
|
for _ in xrange(1000):
|
||||||
|
noised_averages.append(sess.run(query_result))
|
||||||
|
|
||||||
|
result_stddev = np.std(noised_averages)
|
||||||
|
avg_stddev = sum_stddev / denominator
|
||||||
|
self.assertNear(result_stddev, avg_stddev, 0.1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
|
@ -71,6 +71,42 @@ class PrivateQuery(object):
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def get_query_result(self, sample_state, global_state):
|
||||||
|
"""Gets query result after all records of sample have been accumulated.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: The sample state after all records have been accumulated.
|
||||||
|
global_state: The global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (result, new_global_state) where "result" is the result of the
|
||||||
|
query and "new_global_state" is the updated global state.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class PrivateSumQuery(PrivateQuery):
|
||||||
|
"""Interface for differentially private mechanisms to compute a sum."""
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def get_noised_sum(self, sample_state, global_state):
|
||||||
|
"""Gets estimate of sum after all records of sample have been accumulated.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: The sample state after all records have been accumulated.
|
||||||
|
global_state: The global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
||||||
|
sum of the records and "new_global_state" is the updated global state.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_query_result(self, sample_state, global_state):
|
||||||
|
"""Delegates to get_noised_sum."""
|
||||||
|
return self.get_noised_sum(sample_state, global_state)
|
||||||
|
|
||||||
|
|
||||||
class PrivateAverageQuery(PrivateQuery):
|
class PrivateAverageQuery(PrivateQuery):
|
||||||
"""Interface for differentially private mechanisms to compute an average."""
|
"""Interface for differentially private mechanisms to compute an average."""
|
||||||
|
@ -88,3 +124,7 @@ class PrivateAverageQuery(PrivateQuery):
|
||||||
average of the records and "new_global_state" is the updated global state.
|
average of the records and "new_global_state" is the updated global state.
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def get_query_result(self, sample_state, global_state):
|
||||||
|
"""Delegates to get_noised_average."""
|
||||||
|
return self.get_noised_average(sample_state, global_state)
|
||||||
|
|
Loading…
Reference in a new issue