Changes DPOptimizerClass
to generically accept and use any dp_sum_query
.
This enables creation of generic DPOptimizers by user's passing queries. The most common Gaussian query is automatically performed for convenience and backwards compatibility. Byproducts of this update: -ensures consistent implementations between the internal (and legacy) `get_gradients` and newer `_compute_gradients` for all queries. -refactors for python readability. PiperOrigin-RevId: 470883774
This commit is contained in:
parent
ed16033a92
commit
cff47686f6
4 changed files with 295 additions and 200 deletions
|
@ -61,9 +61,14 @@ else:
|
|||
from tensorflow_privacy.privacy.keras_models.dp_keras_model import make_dp_model_class
|
||||
|
||||
# Optimizers
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPAdagradOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPAdamOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPSGDOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdagradOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdamOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import make_gaussian_query_optimizer_class
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import make_keras_generic_optimizer_class
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import make_keras_optimizer_class
|
||||
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras_vectorized import VectorizedDPKerasAdagradOptimizer
|
||||
|
|
|
@ -18,6 +18,18 @@ py_library(
|
|||
deps = ["//tensorflow_privacy/privacy/dp_query:gaussian_query"],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "dp_optimizer_factory",
|
||||
srcs = [
|
||||
"dp_optimizer_keras.py",
|
||||
],
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/dp_query",
|
||||
"//tensorflow_privacy/privacy/dp_query:gaussian_query",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "dp_optimizer_vectorized",
|
||||
srcs = [
|
||||
|
@ -32,7 +44,10 @@ py_library(
|
|||
"dp_optimizer_keras.py",
|
||||
],
|
||||
srcs_version = "PY3",
|
||||
deps = ["//tensorflow_privacy/privacy/dp_query:gaussian_query"],
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/dp_query",
|
||||
"//tensorflow_privacy/privacy/dp_query:gaussian_query",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
|
@ -84,7 +99,7 @@ py_test(
|
|||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
||||
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras_vectorized",
|
||||
":dp_optimizer_keras",
|
||||
":dp_optimizer_keras_vectorized",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -13,21 +13,28 @@
|
|||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Differentially private version of Keras optimizer v2."""
|
||||
from typing import Optional, Type
|
||||
import warnings
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
|
||||
|
||||
def make_keras_optimizer_class(cls):
|
||||
"""Given a subclass of `tf.keras.optimizers.Optimizer`, returns a DP-SGD subclass of it.
|
||||
def _normalize(microbatch_gradient: tf.Tensor,
|
||||
num_microbatches: float) -> tf.Tensor:
|
||||
"""Normalizes `microbatch_gradient` by `num_microbatches`."""
|
||||
return tf.truediv(microbatch_gradient,
|
||||
tf.cast(num_microbatches, microbatch_gradient.dtype))
|
||||
|
||||
|
||||
def make_keras_generic_optimizer_class(
|
||||
cls: Type[tf.keras.optimizers.Optimizer]):
|
||||
"""Returns a differentially private (DP) subclass of `cls`.
|
||||
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.keras.optimizers.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A DP-SGD subclass of `cls`.
|
||||
"""
|
||||
|
||||
class DPOptimizerClass(cls): # pylint: disable=empty-docstring
|
||||
|
@ -138,24 +145,23 @@ def make_keras_optimizer_class(cls):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
l2_norm_clip,
|
||||
noise_multiplier,
|
||||
num_microbatches=None,
|
||||
gradient_accumulation_steps=1,
|
||||
dp_sum_query: dp_query.DPQuery,
|
||||
num_microbatches: Optional[int] = None,
|
||||
gradient_accumulation_steps: int = 1,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
"""Initialize the DPOptimizerClass.
|
||||
"""Initializes the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
dp_sum_query: `DPQuery` object, specifying differential privacy
|
||||
mechanism to use.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. Default is `None` which means that number of microbatches
|
||||
is equal to batch size (i.e. each microbatch contains exactly one
|
||||
split. Default is `None` which means that number of microbatches is
|
||||
equal to batch size (i.e. each microbatch contains exactly one
|
||||
example). If `gradient_accumulation_steps` is greater than 1 and
|
||||
`num_microbatches` is not `None` then the effective number of
|
||||
microbatches is equal to
|
||||
`num_microbatches * gradient_accumulation_steps`.
|
||||
microbatches is equal to `num_microbatches *
|
||||
gradient_accumulation_steps`.
|
||||
gradient_accumulation_steps: If greater than 1 then optimizer will be
|
||||
accumulating gradients for this number of optimizer steps before
|
||||
applying them to update model weights. If this argument is set to 1
|
||||
|
@ -165,13 +171,13 @@ def make_keras_optimizer_class(cls):
|
|||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
self.gradient_accumulation_steps = gradient_accumulation_steps
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
self._noise_multiplier = noise_multiplier
|
||||
self._num_microbatches = num_microbatches
|
||||
self._dp_sum_query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip, l2_norm_clip * noise_multiplier)
|
||||
self._global_state = None
|
||||
self._dp_sum_query = dp_sum_query
|
||||
self._was_dp_gradients_called = False
|
||||
# We initialize the self.`_global_state` within the gradient functions
|
||||
# (and not here) because tensors must be initialized within the graph.
|
||||
|
||||
self._global_state = None
|
||||
|
||||
def _create_slots(self, var_list):
|
||||
super()._create_slots(var_list) # pytype: disable=attribute-error
|
||||
|
@ -235,66 +241,62 @@ def make_keras_optimizer_class(cls):
|
|||
"""DP-SGD version of base class method."""
|
||||
|
||||
self._was_dp_gradients_called = True
|
||||
if self._global_state is None:
|
||||
self._global_state = self._dp_sum_query.initial_global_state()
|
||||
|
||||
# Compute loss.
|
||||
if not callable(loss) and tape is None:
|
||||
raise ValueError('`tape` is required when a `Tensor` loss is passed.')
|
||||
|
||||
tape = tape if tape is not None else tf.GradientTape()
|
||||
|
||||
if callable(loss):
|
||||
with tape:
|
||||
with tape:
|
||||
if callable(loss):
|
||||
if not callable(var_list):
|
||||
tape.watch(var_list)
|
||||
|
||||
loss = loss()
|
||||
if self._num_microbatches is None:
|
||||
num_microbatches = tf.shape(input=loss)[0]
|
||||
else:
|
||||
num_microbatches = self._num_microbatches
|
||||
microbatch_losses = tf.reduce_mean(
|
||||
tf.reshape(loss, [num_microbatches, -1]), axis=1)
|
||||
if self._num_microbatches is None:
|
||||
num_microbatches = tf.shape(input=loss)[0]
|
||||
else:
|
||||
num_microbatches = self._num_microbatches
|
||||
microbatch_losses = tf.reduce_mean(
|
||||
tf.reshape(loss, [num_microbatches, -1]), axis=1)
|
||||
|
||||
if callable(var_list):
|
||||
var_list = var_list()
|
||||
else:
|
||||
with tape:
|
||||
if self._num_microbatches is None:
|
||||
num_microbatches = tf.shape(input=loss)[0]
|
||||
else:
|
||||
num_microbatches = self._num_microbatches
|
||||
microbatch_losses = tf.reduce_mean(
|
||||
tf.reshape(loss, [num_microbatches, -1]), axis=1)
|
||||
if callable(var_list):
|
||||
var_list = var_list()
|
||||
|
||||
var_list = tf.nest.flatten(var_list)
|
||||
|
||||
sample_params = (
|
||||
self._dp_sum_query.derive_sample_params(self._global_state))
|
||||
|
||||
# Compute the per-microbatch losses using helpful jacobian method.
|
||||
with tf.keras.backend.name_scope(self._name + '/gradients'):
|
||||
jacobian = tape.jacobian(
|
||||
jacobian_per_var = tape.jacobian(
|
||||
microbatch_losses, var_list, unconnected_gradients='zero')
|
||||
|
||||
# Clip gradients to given l2_norm_clip.
|
||||
def clip_gradients(g):
|
||||
return tf.clip_by_global_norm(g, self._l2_norm_clip)[0]
|
||||
def process_microbatch(sample_state, microbatch_jacobians):
|
||||
"""Process one microbatch (record) with privacy helper."""
|
||||
sample_state = self._dp_sum_query.accumulate_record(
|
||||
sample_params, sample_state, microbatch_jacobians)
|
||||
return sample_state
|
||||
|
||||
clipped_gradients = tf.map_fn(clip_gradients, jacobian)
|
||||
sample_state = self._dp_sum_query.initial_sample_state(var_list)
|
||||
for idx in range(num_microbatches):
|
||||
microbatch_jacobians_per_var = [
|
||||
jacobian[idx] for jacobian in jacobian_per_var
|
||||
]
|
||||
sample_state = process_microbatch(sample_state,
|
||||
microbatch_jacobians_per_var)
|
||||
|
||||
def reduce_noise_normalize_batch(g):
|
||||
# Sum gradients over all microbatches.
|
||||
summed_gradient = tf.reduce_sum(g, axis=0)
|
||||
grad_sums, self._global_state, _ = (
|
||||
self._dp_sum_query.get_noised_result(sample_state,
|
||||
self._global_state))
|
||||
final_grads = tf.nest.map_structure(_normalize, grad_sums,
|
||||
[num_microbatches] * len(grad_sums))
|
||||
|
||||
# Add noise to summed gradients.
|
||||
noise_stddev = self._l2_norm_clip * self._noise_multiplier
|
||||
noise = tf.random.normal(
|
||||
tf.shape(input=summed_gradient), stddev=noise_stddev)
|
||||
noised_gradient = tf.add(summed_gradient, noise)
|
||||
|
||||
# Normalize by number of microbatches and return.
|
||||
return tf.truediv(noised_gradient,
|
||||
tf.cast(num_microbatches, tf.float32))
|
||||
|
||||
final_gradients = tf.nest.map_structure(reduce_noise_normalize_batch,
|
||||
clipped_gradients)
|
||||
|
||||
return list(zip(final_gradients, var_list))
|
||||
return list(zip(final_grads, var_list))
|
||||
|
||||
def get_gradients(self, loss, params):
|
||||
"""DP-SGD version of base class method."""
|
||||
|
@ -322,17 +324,13 @@ def make_keras_optimizer_class(cls):
|
|||
sample_state = self._dp_sum_query.initial_sample_state(params)
|
||||
for idx in range(self._num_microbatches):
|
||||
sample_state = process_microbatch(idx, sample_state)
|
||||
|
||||
grad_sums, self._global_state, _ = (
|
||||
self._dp_sum_query.get_noised_result(sample_state,
|
||||
self._global_state))
|
||||
|
||||
def normalize(v):
|
||||
try:
|
||||
return tf.truediv(v, tf.cast(self._num_microbatches, tf.float32))
|
||||
except TypeError:
|
||||
return None
|
||||
|
||||
final_grads = tf.nest.map_structure(normalize, grad_sums)
|
||||
final_grads = tf.nest.map_structure(
|
||||
_normalize, grad_sums, [self._num_microbatches] * len(grad_sums))
|
||||
|
||||
return final_grads
|
||||
|
||||
|
@ -368,7 +366,87 @@ def make_keras_optimizer_class(cls):
|
|||
return DPOptimizerClass
|
||||
|
||||
|
||||
DPKerasAdagradOptimizer = make_keras_optimizer_class(
|
||||
def make_gaussian_query_optimizer_class(cls):
|
||||
"""Returns a differentially private optimizer using the `GaussianSumQuery`.
|
||||
|
||||
Args:
|
||||
cls: `DPOptimizerClass`, the output of `make_keras_optimizer_class`.
|
||||
"""
|
||||
|
||||
def return_gaussian_query_optimizer(
|
||||
l2_norm_clip: float,
|
||||
noise_multiplier: float,
|
||||
num_microbatches: Optional[int] = None,
|
||||
gradient_accumulation_steps: int = 1,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
"""Returns a `DPOptimizerClass` `cls` using the `GaussianSumQuery`.
|
||||
|
||||
This function is a thin wrapper around
|
||||
`make_keras_optimizer_class.<locals>.DPOptimizerClass` which can be used to
|
||||
apply a `GaussianSumQuery` to any `DPOptimizerClass`.
|
||||
|
||||
When combined with stochastic gradient descent, this creates the canonical
|
||||
DP-SGD algorithm of "Deep Learning with Differential Privacy"
|
||||
(see https://arxiv.org/abs/1607.00133).
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. Default is `None` which means that number of microbatches is
|
||||
equal to batch size (i.e. each microbatch contains exactly one example).
|
||||
If `gradient_accumulation_steps` is greater than 1 and
|
||||
`num_microbatches` is not `None` then the effective number of
|
||||
microbatches is equal to `num_microbatches *
|
||||
gradient_accumulation_steps`.
|
||||
gradient_accumulation_steps: If greater than 1 then optimizer will be
|
||||
accumulating gradients for this number of optimizer steps before
|
||||
applying them to update model weights. If this argument is set to 1 then
|
||||
updates will be applied on each optimizer step.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip, l2_norm_clip * noise_multiplier)
|
||||
return cls(
|
||||
dp_sum_query=dp_sum_query,
|
||||
num_microbatches=num_microbatches,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
*args,
|
||||
**kwargs)
|
||||
|
||||
return return_gaussian_query_optimizer
|
||||
|
||||
|
||||
def make_keras_optimizer_class(cls: Type[tf.keras.optimizers.Optimizer]):
|
||||
"""Returns a differentially private optimizer using the `GaussianSumQuery`.
|
||||
|
||||
For backwards compatibility, we create this symbol to match the previous
|
||||
output of `make_keras_optimizer_class` but using the new logic.
|
||||
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.keras.optimizers.Optimizer`.
|
||||
"""
|
||||
warnings.warn(
|
||||
'`make_keras_optimizer_class` will be depracated on 2023-02-23. '
|
||||
'Please switch to `make_gaussian_query_optimizer_class` and the '
|
||||
'generic optimizers (`make_keras_generic_optimizer_class`).')
|
||||
return make_gaussian_query_optimizer_class(
|
||||
make_keras_generic_optimizer_class(cls))
|
||||
|
||||
|
||||
GenericDPAdagradOptimizer = make_keras_generic_optimizer_class(
|
||||
tf.keras.optimizers.Adagrad)
|
||||
DPKerasAdamOptimizer = make_keras_optimizer_class(tf.keras.optimizers.Adam)
|
||||
DPKerasSGDOptimizer = make_keras_optimizer_class(tf.keras.optimizers.SGD)
|
||||
GenericDPAdamOptimizer = make_keras_generic_optimizer_class(
|
||||
tf.keras.optimizers.Adam)
|
||||
GenericDPSGDOptimizer = make_keras_generic_optimizer_class(
|
||||
tf.keras.optimizers.SGD)
|
||||
|
||||
# We keep the same names for backwards compatibility.
|
||||
DPKerasAdagradOptimizer = make_gaussian_query_optimizer_class(
|
||||
GenericDPAdagradOptimizer)
|
||||
DPKerasAdamOptimizer = make_gaussian_query_optimizer_class(
|
||||
GenericDPAdamOptimizer)
|
||||
DPKerasSGDOptimizer = make_gaussian_query_optimizer_class(GenericDPSGDOptimizer)
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
@ -29,36 +28,29 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
return 0.5 * tf.reduce_sum(
|
||||
input_tensor=tf.math.squared_difference(val0, val1), axis=1)
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches, expected gradient for
|
||||
# var0, expected gradient for var1.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdam 2', dp_optimizer_keras.DPKerasAdamOptimizer, 2, [-2.5, -2.5
|
||||
], [-0.5]),
|
||||
('DPAdagrad 4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPGradientDescentVectorized 1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdamVectorized 2',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdagradVectorized 4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdagradVectorized None',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPAdam_2', dp_optimizer_keras.DPKerasAdamOptimizer, 2),
|
||||
('DPAdagrad _4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4),
|
||||
('DPGradientDescentVectorized_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1),
|
||||
('DPAdamVectorized_2',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2),
|
||||
('DPAdagradVectorized_4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4),
|
||||
('DPAdagradVectorized_None',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None),
|
||||
)
|
||||
def testBaselineWithCallableLoss(self, cls, num_microbatches, expected_grad0,
|
||||
expected_grad1):
|
||||
def testBaselineWithCallableLossNoNoise(self, optimizer_class,
|
||||
num_microbatches):
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
var1 = tf.Variable([3.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
|
||||
expected_grad0 = [-2.5, -2.5]
|
||||
expected_grad1 = [-0.5]
|
||||
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=num_microbatches,
|
||||
|
@ -66,40 +58,34 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
loss = lambda: self._loss(data0, var0) + self._loss(data1, var1)
|
||||
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0, var1])
|
||||
grads_and_vars = optimizer._compute_gradients(loss, [var0, var1])
|
||||
|
||||
self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0])
|
||||
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches, expected gradient for
|
||||
# var0, expected gradient for var1.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdam 2', dp_optimizer_keras.DPKerasAdamOptimizer, 2, [-2.5, -2.5
|
||||
], [-0.5]),
|
||||
('DPAdagrad 4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPGradientDescentVectorized 1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdamVectorized 2',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdagradVectorized 4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPAdagradVectorized None',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None,
|
||||
[-2.5, -2.5], [-0.5]),
|
||||
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPAdam_2', dp_optimizer_keras.DPKerasAdamOptimizer, 2),
|
||||
('DPAdagrad_4', dp_optimizer_keras.DPKerasAdagradOptimizer, 4),
|
||||
('DPGradientDescentVectorized_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1),
|
||||
('DPAdamVectorized_2',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer, 2),
|
||||
('DPAdagradVectorized_4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, 4),
|
||||
('DPAdagradVectorized_None',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer, None),
|
||||
)
|
||||
def testBaselineWithTensorLoss(self, cls, num_microbatches, expected_grad0,
|
||||
expected_grad1):
|
||||
def testBaselineWithTensorLossNoNoise(self, optimizer_class,
|
||||
num_microbatches):
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
var1 = tf.Variable([3.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
|
||||
expected_grad0 = [-2.5, -2.5]
|
||||
expected_grad1 = [-0.5]
|
||||
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=num_microbatches,
|
||||
|
@ -109,7 +95,7 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
with tape:
|
||||
loss = self._loss(data0, var0) + self._loss(data1, var1)
|
||||
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0, var1], tape=tape)
|
||||
grads_and_vars = optimizer._compute_gradients(loss, [var0, var1], tape=tape)
|
||||
self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0])
|
||||
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
|
||||
|
||||
|
@ -118,11 +104,11 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
('DPGradientDescentVectorized',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer),
|
||||
)
|
||||
def testClippingNorm(self, cls):
|
||||
def testClippingNorm(self, optimizer_class):
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=1,
|
||||
|
@ -130,37 +116,39 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
loss = lambda: self._loss(data0, var0)
|
||||
# Expected gradient is sum of differences.
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0])
|
||||
grads_and_vars = optimizer._compute_gradients(loss, [var0])
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
|
||||
('DPGradientDescent_2_4_1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
|
||||
4.0, 1),
|
||||
('DPGradientDescent 4 1 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4.0,
|
||||
('DPGradientDescent_4_1_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4.0,
|
||||
1.0, 4),
|
||||
('DPGradientDescentVectorized 2 4 1',
|
||||
('DPGradientDescentVectorized_2_4_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0,
|
||||
1),
|
||||
('DPGradientDescentVectorized 4 1 4',
|
||||
('DPGradientDescentVectorized_4_1_4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4.0, 1.0,
|
||||
4),
|
||||
)
|
||||
def testNoiseMultiplier(self, cls, l2_norm_clip, noise_multiplier,
|
||||
def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier,
|
||||
num_microbatches):
|
||||
tf.random.set_seed(2)
|
||||
var0 = tf.Variable(tf.zeros([1000], dtype=tf.float32))
|
||||
data0 = tf.Variable(tf.zeros([16, 1000], dtype=tf.float32))
|
||||
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
|
||||
loss = lambda: self._loss(data0, var0)
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0])
|
||||
grads_and_vars = optimizer._compute_gradients(loss, [var0])
|
||||
grads = grads_and_vars[0][0].numpy()
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
|
||||
self.assertNear(
|
||||
np.std(grads), l2_norm_clip * noise_multiplier / num_microbatches, 0.5)
|
||||
|
||||
|
@ -175,9 +163,9 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
('DPAdamVectorized',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer),
|
||||
)
|
||||
def testAssertOnNoCallOfComputeGradients(self, cls):
|
||||
def testRaisesOnNoCallOfComputeGradients(self, optimizer_class):
|
||||
"""Tests that assertion fails when DP gradients are not computed."""
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=1,
|
||||
|
@ -185,14 +173,14 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
with self.assertRaises(AssertionError):
|
||||
grads_and_vars = tf.Variable([0.0])
|
||||
opt.apply_gradients(grads_and_vars)
|
||||
optimizer.apply_gradients(grads_and_vars)
|
||||
|
||||
# Expect no exception if _compute_gradients is called.
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
loss = lambda: self._loss(data0, var0)
|
||||
grads_and_vars = opt._compute_gradients(loss, [var0])
|
||||
opt.apply_gradients(grads_and_vars)
|
||||
grads_and_vars = optimizer._compute_gradients(loss, [var0])
|
||||
optimizer.apply_gradients(grads_and_vars)
|
||||
|
||||
|
||||
class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
@ -202,8 +190,8 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
the Estimator framework.
|
||||
"""
|
||||
|
||||
def _make_linear_model_fn(self, opt_cls, l2_norm_clip, noise_multiplier,
|
||||
num_microbatches, learning_rate):
|
||||
def _make_linear_model_fn(self, optimizer_class, l2_norm_clip,
|
||||
noise_multiplier, num_microbatches, learning_rate):
|
||||
"""Returns a model function for a linear regressor."""
|
||||
|
||||
def linear_model_fn(features, labels, mode):
|
||||
|
@ -218,7 +206,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
vector_loss = 0.5 * tf.math.squared_difference(labels, preds)
|
||||
scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
|
||||
|
||||
optimizer = opt_cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches,
|
||||
|
@ -234,26 +222,25 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
return linear_model_fn
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPGradientDescent 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2),
|
||||
('DPGradientDescent 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4),
|
||||
('DPGradientDescentVectorized 1',
|
||||
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPGradientDescent_2', dp_optimizer_keras.DPKerasSGDOptimizer, 2),
|
||||
('DPGradientDescent_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4),
|
||||
('DPGradientDescentVectorized_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1),
|
||||
('DPGradientDescentVectorized 2',
|
||||
('DPGradientDescentVectorized_2',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2),
|
||||
('DPGradientDescentVectorized 4',
|
||||
('DPGradientDescentVectorized_4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4),
|
||||
('DPGradientDescentVectorized None',
|
||||
('DPGradientDescentVectorized_None',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, None),
|
||||
)
|
||||
def testBaseline(self, cls, num_microbatches):
|
||||
def testBaselineNoNoise(self, optimizer_class, num_microbatches):
|
||||
"""Tests that DP optimizers work with tf.estimator."""
|
||||
|
||||
linear_regressor = tf_estimator.Estimator(
|
||||
model_fn=self._make_linear_model_fn(cls, 100.0, 0.0, num_microbatches,
|
||||
0.05))
|
||||
model_fn=self._make_linear_model_fn(optimizer_class, 100.0, 0.0,
|
||||
num_microbatches, 0.05))
|
||||
|
||||
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
|
||||
true_bias = np.array([6.0]).astype(np.float32)
|
||||
|
@ -276,13 +263,12 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.assertAllClose(
|
||||
linear_regressor.get_variable_value('dense/bias'), true_bias, atol=0.05)
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPGradientDescentVectorized 1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1),
|
||||
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer),
|
||||
('DPGradientDescentVectorized_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer),
|
||||
)
|
||||
def testClippingNorm(self, cls, num_microbatches):
|
||||
def testClippingNorm(self, optimizer_class):
|
||||
"""Tests that DP optimizers work with tf.estimator."""
|
||||
|
||||
true_weights = np.array([[6.0], [0.0], [0], [0]]).astype(np.float32)
|
||||
|
@ -296,8 +282,12 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
(train_data, train_labels)).batch(1)
|
||||
|
||||
unclipped_linear_regressor = tf_estimator.Estimator(
|
||||
model_fn=self._make_linear_model_fn(cls, 1.0e9, 0.0, num_microbatches,
|
||||
1.0))
|
||||
model_fn=self._make_linear_model_fn(
|
||||
optimizer_class=optimizer_class,
|
||||
l2_norm_clip=1.0e9,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0))
|
||||
unclipped_linear_regressor.train(input_fn=train_input_fn, steps=1)
|
||||
|
||||
kernel_value = unclipped_linear_regressor.get_variable_value('dense/kernel')
|
||||
|
@ -305,8 +295,12 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
global_norm = np.linalg.norm(np.concatenate((kernel_value, [bias_value])))
|
||||
|
||||
clipped_linear_regressor = tf_estimator.Estimator(
|
||||
model_fn=self._make_linear_model_fn(cls, 1.0, 0.0, num_microbatches,
|
||||
1.0))
|
||||
model_fn=self._make_linear_model_fn(
|
||||
optimizer_class=optimizer_class,
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0))
|
||||
clipped_linear_regressor.train(input_fn=train_input_fn, steps=1)
|
||||
|
||||
self.assertAllClose(
|
||||
|
@ -321,29 +315,29 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# Parameters for testing: optimizer, l2_norm_clip, noise_multiplier,
|
||||
# num_microbatches.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
|
||||
('DPGradientDescent_2_4_1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
|
||||
4.0, 1),
|
||||
('DPGradientDescent 3 2 4', dp_optimizer_keras.DPKerasSGDOptimizer, 3.0,
|
||||
('DPGradientDescent_3_2_4', dp_optimizer_keras.DPKerasSGDOptimizer, 3.0,
|
||||
2.0, 4),
|
||||
('DPGradientDescent 8 6 8', dp_optimizer_keras.DPKerasSGDOptimizer, 8.0,
|
||||
('DPGradientDescent_8_6_8', dp_optimizer_keras.DPKerasSGDOptimizer, 8.0,
|
||||
6.0, 8),
|
||||
('DPGradientDescentVectorized 2 4 1',
|
||||
('DPGradientDescentVectorized_2_4_1',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0,
|
||||
1),
|
||||
('DPGradientDescentVectorized 3 2 4',
|
||||
('DPGradientDescentVectorized_3_2_4',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 3.0, 2.0,
|
||||
4),
|
||||
('DPGradientDescentVectorized 8 6 8',
|
||||
('DPGradientDescentVectorized_8_6_8',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 8.0, 6.0,
|
||||
8),
|
||||
)
|
||||
def testNoiseMultiplier(self, cls, l2_norm_clip, noise_multiplier,
|
||||
def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier,
|
||||
num_microbatches):
|
||||
"""Tests that DP optimizers work with tf.estimator."""
|
||||
|
||||
linear_regressor = tf_estimator.Estimator(
|
||||
model_fn=self._make_linear_model_fn(
|
||||
cls,
|
||||
optimizer_class,
|
||||
l2_norm_clip,
|
||||
noise_multiplier,
|
||||
num_microbatches,
|
||||
|
@ -377,9 +371,9 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
('DPAdamVectorized',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer),
|
||||
)
|
||||
def testAssertOnNoCallOfGetGradients(self, cls):
|
||||
def testRaisesOnNoCallOfGetGradients(self, optimizer_class):
|
||||
"""Tests that assertion fails when DP gradients are not computed."""
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=1,
|
||||
|
@ -387,7 +381,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
with self.assertRaises(AssertionError):
|
||||
grads_and_vars = tf.Variable([0.0])
|
||||
opt.apply_gradients(grads_and_vars)
|
||||
optimizer.apply_gradients(grads_and_vars)
|
||||
|
||||
def testLargeBatchEmulationNoNoise(self):
|
||||
# Test for emulation of large batch training.
|
||||
|
@ -408,7 +402,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
x2 = tf.constant([[4.0, 2.0], [2.0, 1.0]], dtype=tf.float32)
|
||||
loss2 = lambda: tf.matmul(var0, x2, transpose_b=True) + var1
|
||||
|
||||
opt = dp_optimizer_keras.DPKerasSGDOptimizer(
|
||||
optimizer = dp_optimizer_keras.DPKerasSGDOptimizer(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
gradient_accumulation_steps=2,
|
||||
|
@ -418,35 +412,36 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
|
||||
self.assertAllCloseAccordingToType([3.0], var1)
|
||||
|
||||
opt.minimize(loss1, [var0, var1])
|
||||
optimizer.minimize(loss1, [var0, var1])
|
||||
# After first call to optimizer values didn't change
|
||||
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
|
||||
self.assertAllCloseAccordingToType([3.0], var1)
|
||||
|
||||
opt.minimize(loss2, [var0, var1])
|
||||
optimizer.minimize(loss2, [var0, var1])
|
||||
# After second call to optimizer updates were applied
|
||||
self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0)
|
||||
self.assertAllCloseAccordingToType([2.0], var1)
|
||||
|
||||
opt.minimize(loss2, [var0, var1])
|
||||
optimizer.minimize(loss2, [var0, var1])
|
||||
# After third call to optimizer values didn't change
|
||||
self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0)
|
||||
self.assertAllCloseAccordingToType([2.0], var1)
|
||||
|
||||
opt.minimize(loss2, [var0, var1])
|
||||
optimizer.minimize(loss2, [var0, var1])
|
||||
# After fourth call to optimizer updates were applied again
|
||||
self.assertAllCloseAccordingToType([[-4.0, -0.5]], var0)
|
||||
self.assertAllCloseAccordingToType([1.0], var1)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPKerasSGDOptimizer 1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPKerasSGDOptimizer 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2),
|
||||
('DPKerasSGDOptimizer 4', dp_optimizer_keras.DPKerasSGDOptimizer, 4),
|
||||
('DPKerasAdamOptimizer 2', dp_optimizer_keras.DPKerasAdamOptimizer, 1),
|
||||
('DPKerasAdagradOptimizer 2', dp_optimizer_keras.DPKerasAdagradOptimizer,
|
||||
('DPKerasSGDOptimizer_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1),
|
||||
('DPKerasSGDOptimizer_2', dp_optimizer_keras.DPKerasSGDOptimizer, 2),
|
||||
('DPKerasSGDOptimizer_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4),
|
||||
('DPKerasAdamOptimizer_2', dp_optimizer_keras.DPKerasAdamOptimizer, 1),
|
||||
('DPKerasAdagradOptimizer_2', dp_optimizer_keras.DPKerasAdagradOptimizer,
|
||||
2),
|
||||
)
|
||||
def testLargeBatchEmulation(self, cls, gradient_accumulation_steps):
|
||||
def testLargeBatchEmulation(self, optimizer_class,
|
||||
gradient_accumulation_steps):
|
||||
# Tests various optimizers with large batch emulation.
|
||||
# Uses clipping and noise, thus does not test specific values
|
||||
# of the variables and only tests how often variables are updated.
|
||||
|
@ -455,7 +450,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
x = tf.constant([[2.0, 0.0], [0.0, 1.0]], dtype=tf.float32)
|
||||
loss = lambda: tf.matmul(var0, x, transpose_b=True) + var1
|
||||
|
||||
opt = cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=100.0,
|
||||
noise_multiplier=0.0,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
|
@ -464,7 +459,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
for _ in range(gradient_accumulation_steps):
|
||||
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
|
||||
self.assertAllCloseAccordingToType([3.0], var1)
|
||||
opt.minimize(loss, [var0, var1])
|
||||
optimizer.minimize(loss, [var0, var1])
|
||||
|
||||
self.assertNotAllClose([[1.0, 2.0]], var0)
|
||||
self.assertNotAllClose([3.0], var1)
|
||||
|
@ -501,19 +496,19 @@ class SimpleEmbeddingModel(tf.keras.Model):
|
|||
return sequence_output, pooled_output
|
||||
|
||||
|
||||
def keras_embedding_model_fn(opt_cls,
|
||||
def keras_embedding_model_fn(optimizer_class,
|
||||
l2_norm_clip: float,
|
||||
noise_multiplier: float,
|
||||
num_microbatches: int,
|
||||
learning_rate: float,
|
||||
use_seq_output: bool = False,
|
||||
use_sequence_output: bool = False,
|
||||
unconnected_gradients_to_zero: bool = False):
|
||||
"""Construct a simple embedding model with a classification layer."""
|
||||
|
||||
# Every sample has 4 tokens (sequence length=4).
|
||||
x = tf.keras.layers.Input(shape=(4,), dtype=tf.float32, name='input')
|
||||
sequence_output, pooled_output = SimpleEmbeddingModel()(x)
|
||||
if use_seq_output:
|
||||
if use_sequence_output:
|
||||
embedding = sequence_output
|
||||
else:
|
||||
embedding = pooled_output
|
||||
|
@ -522,7 +517,7 @@ def keras_embedding_model_fn(opt_cls,
|
|||
embedding)
|
||||
model = tf.keras.Model(inputs=x, outputs=probs, name='model')
|
||||
|
||||
optimizer = opt_cls(
|
||||
optimizer = optimizer_class(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches,
|
||||
|
@ -562,7 +557,7 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
|
|||
@parameterized.named_parameters(
|
||||
('DPSGDVectorized_SeqOutput_UnconnectedGradients',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer),)
|
||||
def testSeqOutputUnconnectedGradientsAsNoneFails(self, cls):
|
||||
def testSeqOutputUnconnectedGradientsAsNoneFails(self, optimizer_class):
|
||||
"""Tests that DP vectorized optimizers with 'None' unconnected gradients fail.
|
||||
|
||||
Sequence models that have unconnected gradients (with
|
||||
|
@ -574,16 +569,16 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
|
|||
These tests test the various combinations of this flag and the model.
|
||||
|
||||
Args:
|
||||
cls: The DP optimizer class to test.
|
||||
optimizer_class: The DP optimizer class to test.
|
||||
"""
|
||||
|
||||
embedding_model = keras_embedding_model_fn(
|
||||
cls,
|
||||
optimizer_class,
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.5,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0,
|
||||
use_seq_output=True,
|
||||
use_sequence_output=True,
|
||||
unconnected_gradients_to_zero=False)
|
||||
|
||||
train_data = np.random.randint(0, 10, size=(1000, 4), dtype=np.int32)
|
||||
|
@ -605,16 +600,16 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
|
|||
@parameterized.named_parameters(
|
||||
('DPSGDVectorized_PooledOutput_UnconnectedGradients',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer),)
|
||||
def testPooledOutputUnconnectedGradientsAsNonePasses(self, cls):
|
||||
def testPooledOutputUnconnectedGradientsAsNonePasses(self, optimizer_class):
|
||||
"""Tests that DP vectorized optimizers with 'None' unconnected gradients fail."""
|
||||
|
||||
embedding_model = keras_embedding_model_fn(
|
||||
cls,
|
||||
optimizer_class,
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.5,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0,
|
||||
use_seq_output=False,
|
||||
use_sequence_output=False,
|
||||
unconnected_gradients_to_zero=False)
|
||||
|
||||
train_data = np.random.randint(0, 10, size=(1000, 4), dtype=np.int32)
|
||||
|
@ -638,16 +633,17 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
|
|||
('DPSGDVectorized_PooledOutput_UnconnectedGradientsAreZero',
|
||||
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, False),
|
||||
)
|
||||
def testUnconnectedGradientsAsZeroPasses(self, cls, use_seq_output):
|
||||
def testUnconnectedGradientsAsZeroPasses(self, optimizer_class,
|
||||
use_sequence_output):
|
||||
"""Tests that DP vectorized optimizers with 'Zero' unconnected gradients pass."""
|
||||
|
||||
embedding_model = keras_embedding_model_fn(
|
||||
cls,
|
||||
optimizer_class,
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.5,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0,
|
||||
use_seq_output=use_seq_output,
|
||||
use_sequence_output=use_sequence_output,
|
||||
unconnected_gradients_to_zero=True)
|
||||
|
||||
train_data = np.random.randint(0, 10, size=(1000, 4), dtype=np.int32)
|
||||
|
@ -664,5 +660,6 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
|
|||
# other exceptions are errors.
|
||||
self.fail('ValueError raised by model.fit().')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
Loading…
Reference in a new issue