conflicts in opt test
This commit is contained in:
commit
d10d7b0148
6 changed files with 105 additions and 60 deletions
|
@ -76,17 +76,12 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
def compile(self,
|
def compile(self,
|
||||||
optimizer,
|
optimizer,
|
||||||
loss,
|
loss,
|
||||||
metrics=None,
|
|
||||||
loss_weights=None,
|
|
||||||
sample_weight_mode=None,
|
|
||||||
weighted_metrics=None,
|
|
||||||
target_tensors=None,
|
|
||||||
distribute=None,
|
|
||||||
kernel_initializer=tf.initializers.GlorotUniform,
|
kernel_initializer=tf.initializers.GlorotUniform,
|
||||||
**kwargs): # pylint: disable=arguments-differ
|
**kwargs): # pylint: disable=arguments-differ
|
||||||
"""See super class. Default optimizer used in Bolton method is SGD.
|
"""See super class. Default optimizer used in Bolton method is SGD.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
<<<<<<< HEAD
|
||||||
optimizer:
|
optimizer:
|
||||||
loss:
|
loss:
|
||||||
metrics:
|
metrics:
|
||||||
|
@ -96,6 +91,14 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
target_tensors:
|
target_tensors:
|
||||||
distribute:
|
distribute:
|
||||||
kernel_initializer:
|
kernel_initializer:
|
||||||
|
=======
|
||||||
|
optimizer: The optimizer to use. This will be automatically wrapped
|
||||||
|
with the Bolton Optimizer.
|
||||||
|
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||||
|
StrongConvexMixin).
|
||||||
|
kernel_initializer: The kernel initializer to use for the single layer.
|
||||||
|
kwargs: kwargs to keras Model.compile. See super.
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
"""
|
"""
|
||||||
if not isinstance(loss, StrongConvexMixin):
|
if not isinstance(loss, StrongConvexMixin):
|
||||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||||
|
@ -112,15 +115,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
optimizer = optimizers.get(optimizer)
|
optimizer = optimizers.get(optimizer)
|
||||||
optimizer = Bolton(optimizer, loss)
|
optimizer = Bolton(optimizer, loss)
|
||||||
|
|
||||||
super(BoltonModel, self).compile(optimizer,
|
super(BoltonModel, self).compile(optimizer, loss=loss, **kwargs)
|
||||||
loss=loss,
|
|
||||||
metrics=metrics,
|
|
||||||
loss_weights=loss_weights,
|
|
||||||
sample_weight_mode=sample_weight_mode,
|
|
||||||
weighted_metrics=weighted_metrics,
|
|
||||||
target_tensors=target_tensors,
|
|
||||||
distribute=distribute,
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
def fit(self,
|
def fit(self,
|
||||||
x=None,
|
x=None,
|
||||||
|
@ -142,6 +137,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
4. Use a strongly convex loss function (see compile)
|
4. Use a strongly convex loss function (see compile)
|
||||||
See super implementation for more details.
|
See super implementation for more details.
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
Args:
|
Args:
|
||||||
n_samples: the number of individual samples in x.
|
n_samples: the number of individual samples in x.
|
||||||
epsilon: privacy parameter, which trades off between utility an privacy.
|
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||||
|
@ -149,6 +145,15 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
noise_distribution: the distribution to pull noise from.
|
noise_distribution: the distribution to pull noise from.
|
||||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||||
whose dim == n_classes.
|
whose dim == n_classes.
|
||||||
|
=======
|
||||||
|
Args:
|
||||||
|
n_samples: the number of individual samples in x.
|
||||||
|
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||||
|
See the bolton paper for more description.
|
||||||
|
noise_distribution: the distribution to pull noise from.
|
||||||
|
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||||
|
whose dim == n_classes.
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
|
|
||||||
See the super method for descriptions on the rest of the arguments.
|
See the super method for descriptions on the rest of the arguments.
|
||||||
"""
|
"""
|
||||||
|
@ -201,6 +206,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
|
|
||||||
This method is the same as fit except for when the passed dataset
|
This method is the same as fit except for when the passed dataset
|
||||||
is a generator. See super method and fit for more details.
|
is a generator. See super method and fit for more details.
|
||||||
|
<<<<<<< HEAD
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
generator:
|
generator:
|
||||||
|
@ -211,6 +217,18 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
Bolton paper for more description.
|
Bolton paper for more description.
|
||||||
n_samples: number of individual samples in x
|
n_samples: number of individual samples in x
|
||||||
steps_per_epoch:
|
steps_per_epoch:
|
||||||
|
=======
|
||||||
|
|
||||||
|
Args:
|
||||||
|
n_samples: number of individual samples in x
|
||||||
|
noise_distribution: the distribution to get noise from.
|
||||||
|
epsilon: privacy parameter, which trades off utility and privacy. See
|
||||||
|
Bolton paper for more description.
|
||||||
|
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||||
|
whose dim == n_classes.
|
||||||
|
|
||||||
|
See the super method for descriptions on the rest of the arguments.
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
"""
|
"""
|
||||||
if class_weight is None:
|
if class_weight is None:
|
||||||
class_weight = self.calculate_class_weights(class_weight)
|
class_weight = self.calculate_class_weights(class_weight)
|
||||||
|
@ -244,6 +262,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
num_classes=None):
|
num_classes=None):
|
||||||
"""Calculates class weighting to be used in training.
|
"""Calculates class weighting to be used in training.
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
Args:
|
Args:
|
||||||
class_weights: str specifying type, array giving weights, or None.
|
class_weights: str specifying type, array giving weights, or None.
|
||||||
class_counts: If class_weights is not None, then an array of
|
class_counts: If class_weights is not None, then an array of
|
||||||
|
@ -252,6 +271,16 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
classes.
|
classes.
|
||||||
Returns:
|
Returns:
|
||||||
class_weights as 1D tensor, to be passed to model's fit method.
|
class_weights as 1D tensor, to be passed to model's fit method.
|
||||||
|
=======
|
||||||
|
Args:
|
||||||
|
class_weights: str specifying type, array giving weights, or None.
|
||||||
|
class_counts: If class_weights is not None, then an array of
|
||||||
|
the number of samples for each class
|
||||||
|
num_classes: If class_weights is not None, then the number of
|
||||||
|
classes.
|
||||||
|
Returns:
|
||||||
|
class_weights as 1D tensor, to be passed to model's fit method.
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
"""
|
"""
|
||||||
# Value checking
|
# Value checking
|
||||||
class_keys = ['balanced']
|
class_keys = ['balanced']
|
||||||
|
|
|
@ -175,12 +175,12 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
},
|
},
|
||||||
])
|
])
|
||||||
def test_compile(self, n_outputs, loss, optimizer):
|
def test_compile(self, n_outputs, loss, optimizer):
|
||||||
"""test compilation of BoltonModel.
|
"""Test compilation of BoltonModel.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
n_outputs: number of output neurons
|
n_outputs: number of output neurons
|
||||||
loss: instantiated TestLoss instance
|
loss: instantiated TestLoss instance
|
||||||
optimizer: instanced TestOptimizer instance
|
optimizer: instantiated TestOptimizer instance
|
||||||
"""
|
"""
|
||||||
# test compilation of valid tf.optimizer and tf.loss
|
# test compilation of valid tf.optimizer and tf.loss
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
|
@ -206,8 +206,13 @@ class InitTests(keras_parameterized.TestCase):
|
||||||
Args:
|
Args:
|
||||||
n_outputs: number of output neurons
|
n_outputs: number of output neurons
|
||||||
loss: instantiated TestLoss instance
|
loss: instantiated TestLoss instance
|
||||||
|
<<<<<<< HEAD
|
||||||
optimizer: instanced TestOptimizer instance
|
optimizer: instanced TestOptimizer instance
|
||||||
"""
|
"""
|
||||||
|
=======
|
||||||
|
optimizer: instantiated TestOptimizer instance
|
||||||
|
"""
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
||||||
with self.cached_session():
|
with self.cached_session():
|
||||||
with self.assertRaises((ValueError, AttributeError)):
|
with self.assertRaises((ValueError, AttributeError)):
|
||||||
|
@ -506,13 +511,13 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'num_classes': 2,
|
'num_classes': 2,
|
||||||
'err_msg': 'Detected array length:'},
|
'err_msg': 'Detected array length:'},
|
||||||
])
|
])
|
||||||
|
|
||||||
def test_class_errors(self,
|
def test_class_errors(self,
|
||||||
class_weights,
|
class_weights,
|
||||||
class_counts,
|
class_counts,
|
||||||
num_classes,
|
num_classes,
|
||||||
err_msg):
|
err_msg):
|
||||||
"""Tests the BOltonModel calculate_class_weights method.
|
"""Tests the BOltonModel calculate_class_weights method.
|
||||||
|
<<<<<<< HEAD
|
||||||
|
|
||||||
This test passes invalid params which should raise the expected errors.
|
This test passes invalid params which should raise the expected errors.
|
||||||
|
|
||||||
|
@ -522,6 +527,17 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
num_classes: number of outputs neurons
|
num_classes: number of outputs neurons
|
||||||
err_msg:
|
err_msg:
|
||||||
"""
|
"""
|
||||||
|
=======
|
||||||
|
|
||||||
|
This test passes invalid params which should raise the expected errors.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
class_weights: the class_weights to use.
|
||||||
|
class_counts: count of number of samples for each class.
|
||||||
|
num_classes: number of outputs neurons.
|
||||||
|
err_msg: The expected error message.
|
||||||
|
"""
|
||||||
|
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||||
clf = models.BoltonModel(1, 1)
|
clf = models.BoltonModel(1, 1)
|
||||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||||
clf.calculate_class_weights(class_weights,
|
clf.calculate_class_weights(class_weights,
|
||||||
|
|
|
@ -310,8 +310,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
noise_distribution: the noise distribution to pick.
|
noise_distribution: the noise distribution to pick.
|
||||||
see _accepted_distributions and get_noise for
|
see _accepted_distributions and get_noise for possible values.
|
||||||
possible values.
|
|
||||||
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
||||||
layers: list of Keras/Tensorflow layers. Can be found as model.layers
|
layers: list of Keras/Tensorflow layers. Can be found as model.layers
|
||||||
class_weights: class_weights used, which may either be a scalar or 1D
|
class_weights: class_weights used, which may either be a scalar or 1D
|
||||||
|
|
|
@ -263,11 +263,11 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||||
"""test that a fn of Bolton optimizer is working as expected.
|
"""test that a fn of Bolton optimizer is working as expected.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
r:
|
r: Radius value for StrongConvex loss function.
|
||||||
shape:
|
shape: input_dimensionality
|
||||||
n_out:
|
n_out: output dimensionality
|
||||||
init_value:
|
init_value: the initial value for 'constant' kernel initializer
|
||||||
result:
|
result: the expected output after projection.
|
||||||
"""
|
"""
|
||||||
tf.random.set_seed(1)
|
tf.random.set_seed(1)
|
||||||
@tf.function
|
@tf.function
|
||||||
|
@ -539,7 +539,7 @@ class SchedulerTest(keras_parameterized.TestCase):
|
||||||
"""Test attribute of internal opt correctly rerouted to the internal opt.
|
"""Test attribute of internal opt correctly rerouted to the internal opt.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
err_msg:
|
err_msg: The expected error message from the scheduler bad call.
|
||||||
"""
|
"""
|
||||||
scheduler = opt.GammaBetaDecreasingStep()
|
scheduler = opt.GammaBetaDecreasingStep()
|
||||||
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
||||||
|
@ -558,13 +558,12 @@ class SchedulerTest(keras_parameterized.TestCase):
|
||||||
])
|
])
|
||||||
def test_call(self, step, res):
|
def test_call(self, step, res):
|
||||||
"""Test call.
|
"""Test call.
|
||||||
|
|
||||||
Test that attribute of internal optimizer is correctly rerouted to the
|
Test that attribute of internal optimizer is correctly rerouted to the
|
||||||
internal optimizer
|
internal optimizer
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
step:
|
step: step number to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||||
res:
|
res: expected result from call to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||||
"""
|
"""
|
||||||
beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32)
|
beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32)
|
||||||
gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||||
|
|
|
@ -12,6 +12,8 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Tutorial for bolton module, the model and the optimizer."""
|
"""Tutorial for bolton module, the model and the optimizer."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||||
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
||||||
|
|
Loading…
Reference in a new issue