More detailed description of arguments in compute_dp_sgd_privacy.
PiperOrigin-RevId: 522693217
This commit is contained in:
parent
c4628d5dbc
commit
d5e41e20ad
2 changed files with 25 additions and 10 deletions
|
@ -34,10 +34,24 @@ from absl import flags
|
|||
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy_statement
|
||||
|
||||
|
||||
_NUM_EXAMPLES = flags.DEFINE_integer('N', None, 'Total number of examples.')
|
||||
_BATCH_SIZE = flags.DEFINE_integer('batch_size', None, 'Batch size.')
|
||||
_NUM_EXAMPLES = flags.DEFINE_integer(
|
||||
'N', None, 'Total number of examples in the training data.'
|
||||
)
|
||||
_BATCH_SIZE = flags.DEFINE_integer(
|
||||
'batch_size',
|
||||
None,
|
||||
(
|
||||
'Number of examples in a batch *regardless of how/whether they are '
|
||||
'grouped into microbatches*.'
|
||||
),
|
||||
)
|
||||
_NOISE_MULTIPLIER = flags.DEFINE_float(
|
||||
'noise_multiplier', None, 'Noise multiplier for DP-SGD.'
|
||||
'noise_multiplier',
|
||||
None,
|
||||
(
|
||||
'Noise multiplier for DP-SGD: ratio of Gaussian noise stddev to the '
|
||||
'l2 clip norm at each round.'
|
||||
),
|
||||
)
|
||||
_NUM_EPOCHS = flags.DEFINE_float(
|
||||
'epochs', None, 'Number of epochs (may be fractional).'
|
||||
|
@ -52,7 +66,7 @@ _MAX_EXAMPLES_PER_USER = flags.DEFINE_integer(
|
|||
'max_examples_per_user',
|
||||
None,
|
||||
(
|
||||
'Maximum number of examples per user, applicable. Used to compute a'
|
||||
'Maximum number of examples per user, if applicable. Used to compute a '
|
||||
'user-level DP guarantee.'
|
||||
),
|
||||
)
|
||||
|
|
|
@ -51,7 +51,7 @@ def _compute_dp_sgd_user_privacy(
|
|||
|
||||
Args:
|
||||
num_epochs: The number of passes over the data. May be fractional.
|
||||
noise_multiplier: The ratio of the noise to the l2 sensitivity.
|
||||
noise_multiplier: The ratio of the noise stddev to the l2 sensitivity.
|
||||
user_delta: The target user-level delta.
|
||||
max_examples_per_user: Upper bound on the number of examples per user.
|
||||
used_microbatching: If true, increases sensitivity by a factor of two.
|
||||
|
@ -183,7 +183,7 @@ def _compute_dp_sgd_example_privacy(
|
|||
|
||||
Args:
|
||||
num_epochs: The number of passes over the data.
|
||||
noise_multiplier: The ratio of the noise to the l2 sensitivity.
|
||||
noise_multiplier: The ratio of the noise stddev to the l2 sensitivity.
|
||||
example_delta: The target delta.
|
||||
used_microbatching: If true, increases sensitivity by a factor of two.
|
||||
poisson_subsampling_probability: If not None, gives the probability that
|
||||
|
@ -244,9 +244,10 @@ def compute_dp_sgd_privacy_statement(
|
|||
examples in a batch, *regardless of whether/how they are grouped into
|
||||
microbatches*.
|
||||
num_epochs: The number of epochs of training. May be fractional.
|
||||
noise_multiplier: The ratio of the Gaussian noise to the clip norm at each
|
||||
round. It is assumed that the noise_multiplier is constant although the
|
||||
clip norm may be variable if, for example, adaptive clipping is used.
|
||||
noise_multiplier: The ratio of the Gaussian noise stddev to the l2 clip norm
|
||||
at each round. It is assumed that the noise_multiplier is constant
|
||||
although the clip norm may be variable if, for example, adaptive clipping
|
||||
is used.
|
||||
delta: The target delta.
|
||||
used_microbatching: Whether microbatching was used (with microbatch size
|
||||
greater than one). Microbatching inflates sensitivity by a factor of two
|
||||
|
|
Loading…
Reference in a new issue