Remove PrivacyLedger which will soon be replaced by DpEvent and PrivacyAccountant.

PiperOrigin-RevId: 393147667
This commit is contained in:
Galen Andrew 2021-08-26 09:59:45 -07:00 committed by A. Unique TensorFlower
parent 0e04e1baeb
commit d9236d5619
19 changed files with 172 additions and 776 deletions

View file

@ -31,10 +31,6 @@ else:
# Analysis # Analysis
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
from tensorflow_privacy.privacy.analysis.privacy_ledger import SampleEntry
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_heterogenous_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_heterogenous_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp_from_ledger from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp_from_ledger

View file

@ -1,299 +0,0 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PrivacyLedger class for keeping a record of private queries."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import tensor_buffer
from tensorflow_privacy.privacy.dp_query import dp_query
SampleEntry = collections.namedtuple( # pylint: disable=invalid-name
'SampleEntry', ['population_size', 'selection_probability', 'queries'])
GaussianSumQueryEntry = collections.namedtuple( # pylint: disable=invalid-name
'GaussianSumQueryEntry', ['l2_norm_bound', 'noise_stddev'])
def format_ledger(sample_array, query_array):
"""Converts array representation into a list of SampleEntries."""
samples = []
query_pos = 0
sample_pos = 0
for sample in sample_array:
population_size, selection_probability, num_queries = sample
queries = []
for _ in range(int(num_queries)):
query = query_array[query_pos]
assert int(query[0]) == sample_pos
queries.append(GaussianSumQueryEntry(*query[1:]))
query_pos += 1
samples.append(SampleEntry(population_size, selection_probability, queries))
sample_pos += 1
return samples
class PrivacyLedger(object):
"""Class for keeping a record of private queries.
The PrivacyLedger keeps a record of all queries executed over a given dataset
for the purpose of computing privacy guarantees. To use it, it must be
associated with a `DPQuery` object via a `QueryWithLedger`.
The current implementation works only with DPQueries that consist of composing
Gaussian sum mechanism with Poisson subsampling.
Example usage:
```
import tensorflow_privacy as tfp
dp_query = tfp.QueryWithLedger(
tensorflow_privacy.GaussianSumQuery(
l2_norm_clip=1.0, stddev=1.0),
population_size=10000,
selection_probability=0.01)
# Use dp_query here in training loop.
formatted_ledger = dp_query.ledger.get_formatted_ledger_eager()
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
list(range(5, 64)) + [128, 256, 512])
total_rdp = tfp.compute_rdp_from_ledger(formatted_ledger, orders)
epsilon = tfp.get_privacy_spent(orders, total_rdp, target_delta=1e-5)
```
"""
def __init__(self,
population_size,
selection_probability):
"""Initializes the PrivacyLedger.
Args:
population_size: An integer (may be variable) specifying the size of the
population, i.e. size of the training data used in each epoch.
selection_probability: A floating point value (may be variable) specifying
the probability each record is included in a sample.
Raises:
ValueError: If `selection_probability` is 0.
"""
self._population_size = population_size
self._selection_probability = selection_probability
if tf.executing_eagerly():
if tf.equal(selection_probability, 0):
raise ValueError('Selection probability cannot be 0.')
init_capacity = tf.cast(tf.math.ceil(1 / selection_probability), tf.int32)
else:
if selection_probability == 0:
raise ValueError('Selection probability cannot be 0.')
init_capacity = np.int(np.ceil(1 / selection_probability))
# The query buffer stores rows corresponding to GaussianSumQueryEntries.
self._query_buffer = tensor_buffer.TensorBuffer(
init_capacity, [3], tf.float32, 'query')
self._sample_var = tf.Variable(
initial_value=tf.zeros([3]), trainable=False, name='sample')
# The sample buffer stores rows corresponding to SampleEntries.
self._sample_buffer = tensor_buffer.TensorBuffer(
init_capacity, [3], tf.float32, 'sample')
self._sample_count = tf.Variable(
initial_value=0.0, trainable=False, name='sample_count')
self._query_count = tf.Variable(
initial_value=0.0, trainable=False, name='query_count')
self._cs = tf.CriticalSection()
def record_sum_query(self, l2_norm_bound, noise_stddev):
"""Records that a query was issued.
Args:
l2_norm_bound: The maximum l2 norm of the tensor group in the query.
noise_stddev: The standard deviation of the noise applied to the sum.
Returns:
An operation recording the sum query to the ledger. This should be called
for every Gaussian sum query that is issued on a sample.
"""
def _do_record_query():
with tf.control_dependencies(
[tf.assign(self._query_count, self._query_count + 1)]):
return self._query_buffer.append(
[self._sample_count, l2_norm_bound, noise_stddev])
return self._cs.execute(_do_record_query)
def finalize_sample(self):
"""Finalizes sample and records sample ledger entry.
This should be called once per application of the mechanism on a sample,
after all sum queries have been recorded.
Returns:
An operation recording the complete mechanism (sampling and sum
estimation) to the ledger.
"""
with tf.control_dependencies([
tf.assign(self._sample_var, [
self._population_size, self._selection_probability,
self._query_count
])
]):
with tf.control_dependencies([
tf.assign(self._sample_count, self._sample_count + 1),
tf.assign(self._query_count, 0)
]):
return self._sample_buffer.append(self._sample_var)
def get_unformatted_ledger(self):
"""Returns the raw sample and query values."""
return self._sample_buffer.values, self._query_buffer.values
def get_formatted_ledger(self, sess):
"""Gets the formatted query ledger.
Args:
sess: The tensorflow session in which the ledger was created.
Returns:
The query ledger as a list of `SampleEntry` instances.
"""
sample_array = sess.run(self._sample_buffer.values)
query_array = sess.run(self._query_buffer.values)
return format_ledger(sample_array, query_array)
def get_formatted_ledger_eager(self):
"""Gets the formatted query ledger.
Returns:
The query ledger as a list of `SampleEntry` instances.
"""
sample_array = self._sample_buffer.values.numpy()
query_array = self._query_buffer.values.numpy()
return format_ledger(sample_array, query_array)
class QueryWithLedger(dp_query.DPQuery):
"""A class for DP queries that record events to a `PrivacyLedger`.
`QueryWithLedger` should be the top-level query in a structure of queries that
may include sum queries, nested queries, etc. It should simply wrap another
query and contain a reference to the ledger. Any contained queries (including
those contained in the leaves of a nested query) should also contain a
reference to the same ledger object.
Only composed Gaussian sum queries with Poisson subsampling are supported.
This includes `GaussianSumQuery`, `QuantileEstimatorQuery`, and
`QuantileAdaptiveClipSumQuery`, as well as `NestedQuery` or `NormalizedQuery`
objects that contain the previous mentioned query types.
"""
def __init__(self, query,
population_size=None, selection_probability=None,
ledger=None):
"""Initializes the `QueryWithLedger`.
Args:
query: The query whose events should be recorded to the ledger. Any
subqueries (including those in the leaves of a nested query) should also
contain a reference to the same ledger given here.
population_size: An integer (may be variable) specifying the size of the
population, i.e. size of the training data used in each epoch. May be
`None` if `ledger` is specified.
selection_probability: A floating point value (may be variable) specifying
the probability each record is included in a sample under Poisson
subsampling. May be `None` if `ledger` is specified.
ledger: A `PrivacyLedger` to use. Must be specified if either of
`population_size` or `selection_probability` is `None`.
"""
self._query = query
if population_size is not None and selection_probability is not None:
self.set_ledger(PrivacyLedger(population_size, selection_probability))
elif ledger is not None:
self.set_ledger(ledger)
else:
raise ValueError('One of (population_size, selection_probability) or '
'ledger must be specified.')
@property
def ledger(self):
"""Gets the ledger that all inner queries record to."""
return self._ledger
def set_ledger(self, ledger):
"""Sets a new ledger."""
self._ledger = ledger
self._query.set_ledger(ledger)
def initial_global_state(self):
"""Implements `tensorflow_privacy.DPQuery.initial_global_state`."""
return self._query.initial_global_state()
def derive_sample_params(self, global_state):
"""Implements `tensorflow_privacy.DPQuery.derive_sample_params`."""
return self._query.derive_sample_params(global_state)
def initial_sample_state(self, template):
"""Implements `tensorflow_privacy.DPQuery.initial_sample_state`."""
return self._query.initial_sample_state(template)
def preprocess_record(self, params, record):
"""Implements `tensorflow_privacy.DPQuery.preprocess_record`."""
return self._query.preprocess_record(params, record)
def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
"""Implements `tensorflow_privacy.DPQuery.accumulate_preprocessed_record`."""
return self._query.accumulate_preprocessed_record(
sample_state, preprocessed_record)
def merge_sample_states(self, sample_state_1, sample_state_2):
"""Implements `tensorflow_privacy.DPQuery.merge_sample_states`."""
return self._query.merge_sample_states(sample_state_1, sample_state_2)
def get_noised_result(self, sample_state, global_state):
"""Implements `tensorflow_privacy.DPQuery.derive_metrics`.
Besides noising and returning the result of the inner query, ensures that
the sample is recorded to the ledger.
Args:
sample_state: The sample state after all records have been accumulated.
global_state: The global state, storing long-term privacy bookkeeping.
Returns:
A tuple (result, new_global_state) where "result" is the result of the
query and "new_global_state" is the updated global state.
"""
# Ensure sample_state is fully aggregated before calling get_noised_result.
with tf.control_dependencies(tf.nest.flatten(sample_state)):
result, new_global_state = self._query.get_noised_result(
sample_state, global_state)
# Ensure inner queries have recorded before finalizing.
with tf.control_dependencies(tf.nest.flatten(result)):
finalize = self._ledger.finalize_sample()
# Ensure finalizing happens.
with tf.control_dependencies([finalize]):
return tf.nest.map_structure(tf.identity, result), new_global_state

View file

@ -1,133 +0,0 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for PrivacyLedger."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.dp_query import gaussian_query
from tensorflow_privacy.privacy.dp_query import nested_query
from tensorflow_privacy.privacy.dp_query import test_utils
tf.enable_eager_execution()
class PrivacyLedgerTest(tf.test.TestCase):
def test_fail_on_probability_zero(self):
with self.assertRaisesRegexp(ValueError,
'Selection probability cannot be 0.'):
privacy_ledger.PrivacyLedger(10, 0)
def test_basic(self):
ledger = privacy_ledger.PrivacyLedger(10, 0.1)
ledger.record_sum_query(5.0, 1.0)
ledger.record_sum_query(2.0, 0.5)
ledger.finalize_sample()
expected_queries = [[5.0, 1.0], [2.0, 0.5]]
formatted = ledger.get_formatted_ledger_eager()
sample = formatted[0]
self.assertAllClose(sample.population_size, 10.0)
self.assertAllClose(sample.selection_probability, 0.1)
self.assertAllClose(sorted(sample.queries), sorted(expected_queries))
def test_sum_query(self):
record1 = tf.constant([2.0, 0.0])
record2 = tf.constant([-1.0, 1.0])
population_size = tf.Variable(0)
selection_probability = tf.Variable(1.0)
query = gaussian_query.GaussianSumQuery(l2_norm_clip=10.0, stddev=0.0)
query = privacy_ledger.QueryWithLedger(query, population_size,
selection_probability)
# First sample.
tf.assign(population_size, 10)
tf.assign(selection_probability, 0.1)
test_utils.run_query(query, [record1, record2])
expected_queries = [[10.0, 0.0]]
formatted = query.ledger.get_formatted_ledger_eager()
sample_1 = formatted[0]
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sample_1.queries, expected_queries)
# Second sample.
tf.assign(population_size, 20)
tf.assign(selection_probability, 0.2)
test_utils.run_query(query, [record1, record2])
formatted = query.ledger.get_formatted_ledger_eager()
sample_1, sample_2 = formatted
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sample_1.queries, expected_queries)
self.assertAllClose(sample_2.population_size, 20.0)
self.assertAllClose(sample_2.selection_probability, 0.2)
self.assertAllClose(sample_2.queries, expected_queries)
def test_nested_query(self):
population_size = tf.Variable(0)
selection_probability = tf.Variable(1.0)
query1 = gaussian_query.GaussianSumQuery(l2_norm_clip=4.0, stddev=2.0)
query2 = gaussian_query.GaussianSumQuery(l2_norm_clip=5.0, stddev=1.0)
query = nested_query.NestedQuery([query1, query2])
query = privacy_ledger.QueryWithLedger(query, population_size,
selection_probability)
record1 = [1.0, [12.0, 9.0]]
record2 = [5.0, [1.0, 2.0]]
# First sample.
tf.assign(population_size, 10)
tf.assign(selection_probability, 0.1)
test_utils.run_query(query, [record1, record2])
expected_queries = [[4.0, 2.0], [5.0, 1.0]]
formatted = query.ledger.get_formatted_ledger_eager()
sample_1 = formatted[0]
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
# Second sample.
tf.assign(population_size, 20)
tf.assign(selection_probability, 0.2)
test_utils.run_query(query, [record1, record2])
formatted = query.ledger.get_formatted_ledger_eager()
sample_1, sample_2 = formatted
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
self.assertAllClose(sample_2.population_size, 20.0)
self.assertAllClose(sample_2.selection_probability, 0.2)
self.assertAllClose(sorted(sample_2.queries), sorted(expected_queries))
if __name__ == '__main__':
tf.test.main()

View file

@ -47,7 +47,6 @@ import numpy as np
from scipy import special from scipy import special
import six import six
######################## ########################
# LOG-SPACE ARITHMETIC # # LOG-SPACE ARITHMETIC #
######################## ########################
@ -102,8 +101,8 @@ def _log_print(logx):
def _log_comb(n, k): def _log_comb(n, k):
return (special.gammaln(n + 1) - return (special.gammaln(n + 1) - special.gammaln(k + 1) -
special.gammaln(k + 1) - special.gammaln(n - k + 1)) special.gammaln(n - k + 1))
def _compute_log_a_int(q, sigma, alpha): def _compute_log_a_int(q, sigma, alpha):
@ -215,17 +214,19 @@ def _compute_delta(orders, rdp, eps):
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4): # Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4):
logdeltas = [] # work in log space to avoid overflows logdeltas = [] # work in log space to avoid overflows
for (a, r) in zip(orders_vec, rdp_vec): for (a, r) in zip(orders_vec, rdp_vec):
if a < 1: raise ValueError("Renyi divergence order must be >=1.") if a < 1:
if r < 0: raise ValueError("Renyi divergence must be >=0.") raise ValueError("Renyi divergence order must be >=1.")
if r < 0:
raise ValueError("Renyi divergence must be >=0.")
# For small alpha, we are better of with bound via KL divergence: # For small alpha, we are better of with bound via KL divergence:
# delta <= sqrt(1-exp(-KL)). # delta <= sqrt(1-exp(-KL)).
# Take a min of the two bounds. # Take a min of the two bounds.
logdelta = 0.5*math.log1p(-math.exp(-r)) logdelta = 0.5 * math.log1p(-math.exp(-r))
if a > 1.01: if a > 1.01:
# This bound is not numerically stable as alpha->1. # This bound is not numerically stable as alpha->1.
# Thus we have a min value for alpha. # Thus we have a min value for alpha.
# The bound is also not useful for small alpha, so doesn't matter. # The bound is also not useful for small alpha, so doesn't matter.
rdp_bound = (a - 1) * (r - eps + math.log1p(-1/a)) - math.log(a) rdp_bound = (a - 1) * (r - eps + math.log1p(-1 / a)) - math.log(a)
logdelta = min(logdelta, rdp_bound) logdelta = min(logdelta, rdp_bound)
logdeltas.append(logdelta) logdeltas.append(logdelta)
@ -264,8 +265,10 @@ def _compute_eps(orders, rdp, delta):
# Also appears in https://arxiv.org/abs/2001.05990 Equation 20 (in v1). # Also appears in https://arxiv.org/abs/2001.05990 Equation 20 (in v1).
eps_vec = [] eps_vec = []
for (a, r) in zip(orders_vec, rdp_vec): for (a, r) in zip(orders_vec, rdp_vec):
if a < 1: raise ValueError("Renyi divergence order must be >=1.") if a < 1:
if r < 0: raise ValueError("Renyi divergence must be >=0.") raise ValueError("Renyi divergence order must be >=1.")
if r < 0:
raise ValueError("Renyi divergence must be >=0.")
if delta**2 + math.expm1(-r) >= 0: if delta**2 + math.expm1(-r) >= 0:
# In this case, we can simply bound via KL divergence: # In this case, we can simply bound via KL divergence:
@ -388,8 +391,8 @@ def compute_rdp(q, noise_multiplier, steps, orders):
if np.isscalar(orders): if np.isscalar(orders):
rdp = _compute_rdp(q, noise_multiplier, orders) rdp = _compute_rdp(q, noise_multiplier, orders)
else: else:
rdp = np.array([_compute_rdp(q, noise_multiplier, order) rdp = np.array(
for order in orders]) [_compute_rdp(q, noise_multiplier, order) for order in orders])
return rdp * steps return rdp * steps
@ -572,8 +575,8 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
target_eps: If not `None`, the epsilon for which we compute the target_eps: If not `None`, the epsilon for which we compute the
corresponding delta. corresponding delta.
target_delta: If not `None`, the delta for which we compute the target_delta: If not `None`, the delta for which we compute the
corresponding epsilon. Exactly one of `target_eps` and `target_delta` corresponding epsilon. Exactly one of `target_eps` and `target_delta` must
must be `None`. be `None`.
Returns: Returns:
A tuple of epsilon, delta, and the optimal order. A tuple of epsilon, delta, and the optimal order.
@ -595,24 +598,3 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
else: else:
eps, opt_order = _compute_eps(orders, rdp, target_delta) eps, opt_order = _compute_eps(orders, rdp, target_delta)
return eps, target_delta, opt_order return eps, target_delta, opt_order
def compute_rdp_from_ledger(ledger, orders):
"""Computes RDP of Sampled Gaussian Mechanism from ledger.
Args:
ledger: A formatted privacy ledger.
orders: An array (or a scalar) of RDP orders.
Returns:
RDP at all orders. Can be `np.inf`.
"""
total_rdp = np.zeros_like(orders, dtype=float)
for sample in ledger:
# Compute equivalent z from l2_clip_bounds and noise stddevs in sample.
# See https://arxiv.org/pdf/1812.06210.pdf for derivation of this formula.
effective_z = sum([
(q.noise_stddev / q.l2_norm_bound)**-2 for q in sample.queries])**-0.5
total_rdp += compute_rdp(
sample.selection_probability, effective_z, 1, orders)
return total_rdp

View file

@ -31,7 +31,6 @@ from mpmath import quad
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.analysis import rdp_accountant from tensorflow_privacy.privacy.analysis import rdp_accountant
@ -121,16 +120,47 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
[6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02, np.inf], [6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02, np.inf],
rtol=1e-4) rtol=1e-4)
params = ({'q': 1e-7, 'sigma': .1, 'order': 1.01}, params = ({
{'q': 1e-6, 'sigma': .1, 'order': 256}, 'q': 1e-7,
{'q': 1e-5, 'sigma': .1, 'order': 256.1}, 'sigma': .1,
{'q': 1e-6, 'sigma': 1, 'order': 27}, 'order': 1.01
{'q': 1e-4, 'sigma': 1., 'order': 1.5}, }, {
{'q': 1e-3, 'sigma': 1., 'order': 2}, 'q': 1e-6,
{'q': .01, 'sigma': 10, 'order': 20}, 'sigma': .1,
{'q': .1, 'sigma': 100, 'order': 20.5}, 'order': 256
{'q': .99, 'sigma': .1, 'order': 256}, }, {
{'q': .999, 'sigma': 100, 'order': 256.1}) 'q': 1e-5,
'sigma': .1,
'order': 256.1
}, {
'q': 1e-6,
'sigma': 1,
'order': 27
}, {
'q': 1e-4,
'sigma': 1.,
'order': 1.5
}, {
'q': 1e-3,
'sigma': 1.,
'order': 2
}, {
'q': .01,
'sigma': 10,
'order': 20
}, {
'q': .1,
'sigma': 100,
'order': 20.5
}, {
'q': .99,
'sigma': .1,
'order': 256
}, {
'q': .999,
'sigma': 100,
'order': 256.1
})
# pylint:disable=undefined-variable # pylint:disable=undefined-variable
@parameterized.parameters(p for p in params) @parameterized.parameters(p for p in params)
@ -152,7 +182,8 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
self.assertAlmostEqual(eps, 1.32783806176) self.assertAlmostEqual(eps, 1.32783806176)
# Second test for Gaussian noise (with no subsampling): # Second test for Gaussian noise (with no subsampling):
orders = [0.001*i for i in range(1000, 100000)] # Pick fine set of orders. orders = [0.001 * i for i in range(1000, 100000)
] # Pick fine set of orders.
rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders) rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders)
# Scale is chosen to obtain exactly (1,1e-6)-DP. # Scale is chosen to obtain exactly (1,1e-6)-DP.
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6) eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6)
@ -168,7 +199,7 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
self.assertAlmostEqual(delta, 1e-5) self.assertAlmostEqual(delta, 1e-5)
# Second test for Gaussian noise (with no subsampling): # Second test for Gaussian noise (with no subsampling):
orders = [0.001*i for i in range(1000, 100000)] # Pick fine set of order. orders = [0.001 * i for i in range(1000, 100000)] # Pick fine set of order.
rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders) rdp = rdp_accountant.compute_rdp(1, 4.530877117, 1, orders)
# Scale is chosen to obtain exactly (1,1e-6)-DP. # Scale is chosen to obtain exactly (1,1e-6)-DP.
_, delta, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_eps=1) _, delta, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_eps=1)
@ -178,17 +209,13 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
orders = (1.25, 1.5, 1.75, 2., 2.5, 3., 4., 5., 6., 7., 8., 10., 12., 14., orders = (1.25, 1.5, 1.75, 2., 2.5, 3., 4., 5., 6., 7., 8., 10., 12., 14.,
16., 20., 24., 28., 32., 64., 256.) 16., 20., 24., 28., 32., 64., 256.)
rdp = rdp_accountant.compute_rdp(q=1e-4, rdp = rdp_accountant.compute_rdp(
noise_multiplier=.4, q=1e-4, noise_multiplier=.4, steps=40000, orders=orders)
steps=40000,
orders=orders)
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6) eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-6)
rdp += rdp_accountant.compute_rdp(q=0.1, rdp += rdp_accountant.compute_rdp(
noise_multiplier=2, q=0.1, noise_multiplier=2, steps=100, orders=orders)
steps=100,
orders=orders)
eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-5) eps, _, _ = rdp_accountant.get_privacy_spent(orders, rdp, target_delta=1e-5)
# These tests use the old RDP -> approx DP conversion # These tests use the old RDP -> approx DP conversion
# self.assertAlmostEqual(eps, 8.509656, places=5) # self.assertAlmostEqual(eps, 8.509656, places=5)
@ -217,42 +244,25 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
def test_get_privacy_spent_gaussian(self): def test_get_privacy_spent_gaussian(self):
# Compare the optimal bound for Gaussian with the one derived from RDP. # Compare the optimal bound for Gaussian with the one derived from RDP.
# Also compare the RDP upper bound with the "standard" upper bound. # Also compare the RDP upper bound with the "standard" upper bound.
orders = [0.1*x for x in range(10, 505)] orders = [0.1 * x for x in range(10, 505)]
eps_vec = [0.1*x for x in range(500)] eps_vec = [0.1 * x for x in range(500)]
rdp = rdp_accountant.compute_rdp(1, 1, 1, orders) rdp = rdp_accountant.compute_rdp(1, 1, 1, orders)
for eps in eps_vec: for eps in eps_vec:
_, delta, _ = rdp_accountant.get_privacy_spent(orders, rdp, _, delta, _ = rdp_accountant.get_privacy_spent(
target_eps=eps) orders, rdp, target_eps=eps)
# For comparison, we compute the optimal guarantee for Gaussian # For comparison, we compute the optimal guarantee for Gaussian
# using https://arxiv.org/abs/1805.06530 Theorem 8 (in v2). # using https://arxiv.org/abs/1805.06530 Theorem 8 (in v2).
delta0 = math.erfc((eps-.5)/math.sqrt(2))/2 delta0 = math.erfc((eps - .5) / math.sqrt(2)) / 2
delta0 = delta0 - math.exp(eps)*math.erfc((eps+.5)/math.sqrt(2))/2 delta0 = delta0 - math.exp(eps) * math.erfc((eps + .5) / math.sqrt(2)) / 2
self.assertLessEqual(delta0, delta+1e-300) # need tolerance 10^-300 self.assertLessEqual(delta0, delta + 1e-300) # need tolerance 10^-300
# Compute the "standard" upper bound, which should be an upper bound. # Compute the "standard" upper bound, which should be an upper bound.
# Note, if orders is too sparse, this will NOT be an upper bound. # Note, if orders is too sparse, this will NOT be an upper bound.
if eps >= 0.5: if eps >= 0.5:
delta1 = math.exp(-0.5*(eps-0.5)**2) delta1 = math.exp(-0.5 * (eps - 0.5)**2)
else: else:
delta1 = 1 delta1 = 1
self.assertLessEqual(delta, delta1+1e-300) self.assertLessEqual(delta, delta1 + 1e-300)
def test_compute_rdp_from_ledger(self):
orders = range(2, 33)
q = 0.1
n = 1000
l2_norm_clip = 3.14159
noise_stddev = 2.71828
steps = 3
query_entry = privacy_ledger.GaussianSumQueryEntry(
l2_norm_clip, noise_stddev)
ledger = [privacy_ledger.SampleEntry(n, q, [query_entry])] * steps
z = noise_stddev / l2_norm_clip
rdp = rdp_accountant.compute_rdp(q, z, steps, orders)
rdp_from_ledger = rdp_accountant.compute_rdp_from_ledger(ledger, orders)
self.assertSequenceAlmostEqual(rdp, rdp_from_ledger)
if __name__ == '__main__': if __name__ == '__main__':

View file

@ -46,11 +46,6 @@ class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
self._l2_norm_bound = l2_norm_bound self._l2_norm_bound = l2_norm_bound
self._stddev = stddev self._stddev = stddev
def set_ledger(self, ledger):
del ledger # Unused.
raise NotImplementedError('Ledger has not yet been implemented for'
'DiscreteGaussianSumQuery!')
def initial_global_state(self): def initial_global_state(self):
return self._GlobalState( return self._GlobalState(
tf.cast(self._l2_norm_bound, tf.float32), tf.cast(self._l2_norm_bound, tf.float32),

View file

@ -46,11 +46,6 @@ class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
self._l2_norm_bound = l2_norm_bound self._l2_norm_bound = l2_norm_bound
self._local_stddev = local_stddev self._local_stddev = local_stddev
def set_ledger(self, ledger):
del ledger # Unused.
raise NotImplementedError('Ledger has not yet been implemented for'
'DistributedDiscreteGaussianSumQuery!')
def initial_global_state(self): def initial_global_state(self):
return self._GlobalState( return self._GlobalState(
tf.cast(self._l2_norm_bound, tf.float32), tf.cast(self._l2_norm_bound, tf.float32),

View file

@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""An interface for differentially private query mechanisms. """An interface for differentially private query mechanisms.
The DPQuery class abstracts the differential privacy mechanism needed by DP-SGD. The DPQuery class abstracts the differential privacy mechanism needed by DP-SGD.
@ -100,18 +99,6 @@ class DPQuery(object):
__metaclass__ = abc.ABCMeta __metaclass__ = abc.ABCMeta
def set_ledger(self, ledger):
"""Supplies privacy ledger to which the query can record privacy events.
The ledger should be updated with each call to get_noised_result.
Args:
ledger: A `PrivacyLedger`.
"""
del ledger
raise TypeError(
'DPQuery type %s does not support set_ledger.' % type(self).__name__)
def initial_global_state(self): def initial_global_state(self):
"""Returns the initial global state for the DPQuery. """Returns the initial global state for the DPQuery.
@ -155,7 +142,6 @@ class DPQuery(object):
as a template to create the initial sample state. It is assumed that the as a template to create the initial sample state. It is assumed that the
leaves of the structure are python scalars or some type that has leaves of the structure are python scalars or some type that has
properties `shape` and `dtype`. properties `shape` and `dtype`.
Returns: An initial sample state. Returns: An initial sample state.
""" """
pass pass
@ -171,12 +157,12 @@ class DPQuery(object):
variables that are stored in self. variables that are stored in self.
Args: Args:
params: The parameters for the sample. In standard DP-SGD training, params: The parameters for the sample. In standard DP-SGD training, the
the clipping norm for the sample's microbatch gradients (i.e., clipping norm for the sample's microbatch gradients (i.e., a maximum
a maximum norm magnitude to which each gradient is clipped) norm magnitude to which each gradient is clipped)
record: The record to be processed. In standard DP-SGD training, record: The record to be processed. In standard DP-SGD training, the
the gradient computed for the examples in one microbatch, which gradient computed for the examples in one microbatch, which may be the
may be the gradient for just one example (for size 1 microbatches). gradient for just one example (for size 1 microbatches).
Returns: Returns:
A structure of tensors to be aggregated. A structure of tensors to be aggregated.
@ -185,8 +171,7 @@ class DPQuery(object):
return record return record
@abc.abstractmethod @abc.abstractmethod
def accumulate_preprocessed_record( def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
self, sample_state, preprocessed_record):
"""Accumulates a single preprocessed record into the sample state. """Accumulates a single preprocessed record into the sample state.
This method is intended to only do simple aggregation, typically just a sum. This method is intended to only do simple aggregation, typically just a sum.
@ -194,8 +179,8 @@ class DPQuery(object):
declaratively specify the type of aggregation required. declaratively specify the type of aggregation required.
Args: Args:
sample_state: The current sample state. In standard DP-SGD training, sample_state: The current sample state. In standard DP-SGD training, the
the accumulated sum of previous clipped microbatch gradients. accumulated sum of previous clipped microbatch gradients.
preprocessed_record: The preprocessed record to accumulate. preprocessed_record: The preprocessed record to accumulate.
Returns: Returns:
@ -211,22 +196,22 @@ class DPQuery(object):
functions run on a single device. Typically this will be a simple sum. functions run on a single device. Typically this will be a simple sum.
Args: Args:
params: The parameters for the sample. In standard DP-SGD training, params: The parameters for the sample. In standard DP-SGD training, the
the clipping norm for the sample's microbatch gradients (i.e., clipping norm for the sample's microbatch gradients (i.e., a maximum
a maximum norm magnitude to which each gradient is clipped) norm magnitude to which each gradient is clipped)
sample_state: The current sample state. In standard DP-SGD training, sample_state: The current sample state. In standard DP-SGD training, the
the accumulated sum of previous clipped microbatch gradients. accumulated sum of previous clipped microbatch gradients.
record: The record to accumulate. In standard DP-SGD training, record: The record to accumulate. In standard DP-SGD training, the
the gradient computed for the examples in one microbatch, which gradient computed for the examples in one microbatch, which may be the
may be the gradient for just one example (for size 1 microbatches). gradient for just one example (for size 1 microbatches).
Returns: Returns:
The updated sample state. In standard DP-SGD training, the set of The updated sample state. In standard DP-SGD training, the set of
previous microbatch gradients with the addition of the record argument. previous microbatch gradients with the addition of the record argument.
""" """
preprocessed_record = self.preprocess_record(params, record) preprocessed_record = self.preprocess_record(params, record)
return self.accumulate_preprocessed_record( return self.accumulate_preprocessed_record(sample_state,
sample_state, preprocessed_record) preprocessed_record)
@abc.abstractmethod @abc.abstractmethod
def merge_sample_states(self, sample_state_1, sample_state_2): def merge_sample_states(self, sample_state_1, sample_state_2):

View file

@ -47,10 +47,6 @@ class GaussianSumQuery(dp_query.SumAggregationDPQuery):
self._stddev = stddev self._stddev = stddev
self._ledger = None self._ledger = None
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
self._ledger = ledger
def make_global_state(self, l2_norm_clip, stddev): def make_global_state(self, l2_norm_clip, stddev):
"""Creates a global state from the given parameters.""" """Creates a global state from the given parameters."""
return self._GlobalState( return self._GlobalState(

View file

@ -11,9 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Implements DPQuery interface for queries over nested structures."""
"""Implements DPQuery interface for queries over nested structures.
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
@ -60,16 +58,13 @@ class NestedQuery(dp_query.DPQuery):
def _map_to_queries(self, fn, *inputs, **kwargs): def _map_to_queries(self, fn, *inputs, **kwargs):
"""Maps DPQuery methods to the subqueries.""" """Maps DPQuery methods to the subqueries."""
def caller(query, *args): def caller(query, *args):
return getattr(query, fn)(*args, **kwargs) return getattr(query, fn)(*args, **kwargs)
return tree.map_structure_up_to(self._queries, caller, self._queries, return tree.map_structure_up_to(self._queries, caller, self._queries,
*inputs) *inputs)
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
self._map_to_queries('set_ledger', ledger=ledger)
def initial_global_state(self): def initial_global_state(self):
"""Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" """Implements `tensorflow_privacy.DPQuery.initial_global_state`."""
return self._map_to_queries('initial_global_state') return self._map_to_queries('initial_global_state')
@ -89,18 +84,15 @@ class NestedQuery(dp_query.DPQuery):
"""Implements `tensorflow_privacy.DPQuery.preprocess_record`.""" """Implements `tensorflow_privacy.DPQuery.preprocess_record`."""
return self._map_to_queries('preprocess_record', params, record) return self._map_to_queries('preprocess_record', params, record)
def accumulate_preprocessed_record( def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
self, sample_state, preprocessed_record):
"""Implements `tensorflow_privacy.DPQuery.accumulate_preprocessed_record`.""" """Implements `tensorflow_privacy.DPQuery.accumulate_preprocessed_record`."""
return self._map_to_queries( return self._map_to_queries('accumulate_preprocessed_record', sample_state,
'accumulate_preprocessed_record',
sample_state,
preprocessed_record) preprocessed_record)
def merge_sample_states(self, sample_state_1, sample_state_2): def merge_sample_states(self, sample_state_1, sample_state_2):
"""Implements `tensorflow_privacy.DPQuery.merge_sample_states`.""" """Implements `tensorflow_privacy.DPQuery.merge_sample_states`."""
return self._map_to_queries( return self._map_to_queries('merge_sample_states', sample_state_1,
'merge_sample_states', sample_state_1, sample_state_2) sample_state_2)
def get_noised_result(self, sample_state, global_state): def get_noised_result(self, sample_state, global_state):
"""Implements `tensorflow_privacy.DPQuery.get_noised_result`.""" """Implements `tensorflow_privacy.DPQuery.get_noised_result`."""
@ -118,12 +110,12 @@ class NestedQuery(dp_query.DPQuery):
def add_metrics(tuple_path, subquery, subquery_global_state): def add_metrics(tuple_path, subquery, subquery_global_state):
metrics.update({ metrics.update({
'/'.join(str(s) for s in tuple_path + (name,)): metric '/'.join(str(s) for s in tuple_path + (name,)): metric for name,
for name, metric metric in subquery.derive_metrics(subquery_global_state).items()
in subquery.derive_metrics(subquery_global_state).items()}) })
tree.map_structure_with_path_up_to( tree.map_structure_with_path_up_to(self._queries, add_metrics,
self._queries, add_metrics, self._queries, global_state) self._queries, global_state)
return metrics return metrics
@ -137,12 +129,13 @@ class NestedSumQuery(NestedQuery, dp_query.SumAggregationDPQuery):
Args: Args:
queries: A nested structure of queries that must all be queries: A nested structure of queries that must all be
SumAggregationDPQueries. SumAggregationDPQueries.
Raises: TypeError if any of the subqueries are not SumAggregationDPQueries. Raises: TypeError if any of the subqueries are not SumAggregationDPQueries.
""" """
def check(query): def check(query):
if not isinstance(query, dp_query.SumAggregationDPQuery): if not isinstance(query, dp_query.SumAggregationDPQuery):
raise TypeError('All subqueries must be SumAggregationDPQueries.') raise TypeError('All subqueries must be SumAggregationDPQueries.')
tree.map_structure(check, queries) tree.map_structure(check, queries)
super(NestedSumQuery, self).__init__(queries) super(NestedSumQuery, self).__init__(queries)

View file

@ -17,8 +17,6 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import warnings
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
@ -33,20 +31,11 @@ class NoPrivacySumQuery(dp_query.SumAggregationDPQuery):
def __init__(self): def __init__(self):
self._ledger = None self._ledger = None
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
warnings.warn(
'Attempt to use NoPrivacySumQuery with privacy ledger. Privacy '
'guarantees will be vacuous.')
self._ledger = ledger
def get_noised_result(self, sample_state, global_state): def get_noised_result(self, sample_state, global_state):
"""Implements `tensorflow_privacy.DPQuery.get_noised_result`.""" """Implements `tensorflow_privacy.DPQuery.get_noised_result`."""
if self._ledger: if self._ledger:
dependencies = [ dependencies = [self._ledger.record_sum_query(float('inf'), 0.0)]
self._ledger.record_sum_query(float('inf'), 0.0)
]
else: else:
dependencies = [] dependencies = []
@ -71,17 +60,10 @@ class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
"""Initializes the NoPrivacyAverageQuery.""" """Initializes the NoPrivacyAverageQuery."""
self._ledger = None self._ledger = None
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
warnings.warn(
'Attempt to use NoPrivacyAverageQuery with privacy ledger. Privacy '
'guarantees will be vacuous.')
self._ledger = ledger
def initial_sample_state(self, template): def initial_sample_state(self, template):
"""Implements `tensorflow_privacy.DPQuery.initial_sample_state`.""" """Implements `tensorflow_privacy.DPQuery.initial_sample_state`."""
return (super(NoPrivacyAverageQuery, self).initial_sample_state(template), return (super(NoPrivacyAverageQuery,
tf.constant(0.0)) self).initial_sample_state(template), tf.constant(0.0))
def preprocess_record(self, params, record, weight=1): def preprocess_record(self, params, record, weight=1):
"""Implements `tensorflow_privacy.DPQuery.preprocess_record`. """Implements `tensorflow_privacy.DPQuery.preprocess_record`.
@ -122,9 +104,7 @@ class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
sum_state, denominator = sample_state sum_state, denominator = sample_state
if self._ledger: if self._ledger:
dependencies = [ dependencies = [self._ledger.record_sum_query(float('inf'), 0.0)]
self._ledger.record_sum_query(float('inf'), 0.0)
]
else: else:
dependencies = [] dependencies = []

View file

@ -11,9 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Implements DPQuery interface for normalized queries."""
"""Implements DPQuery interface for normalized queries.
"""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
@ -38,8 +36,8 @@ class NormalizedQuery(dp_query.SumAggregationDPQuery):
""" """
# pylint: disable=invalid-name # pylint: disable=invalid-name
_GlobalState = collections.namedtuple( _GlobalState = collections.namedtuple('_GlobalState',
'_GlobalState', ['numerator_state', 'denominator']) ['numerator_state', 'denominator'])
def __init__(self, numerator_query, denominator): def __init__(self, numerator_query, denominator):
"""Initializes the NormalizedQuery. """Initializes the NormalizedQuery.
@ -55,15 +53,11 @@ class NormalizedQuery(dp_query.SumAggregationDPQuery):
assert isinstance(self._numerator, dp_query.SumAggregationDPQuery) assert isinstance(self._numerator, dp_query.SumAggregationDPQuery)
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
self._numerator.set_ledger(ledger)
def initial_global_state(self): def initial_global_state(self):
"""Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" """Implements `tensorflow_privacy.DPQuery.initial_global_state`."""
denominator = tf.cast(self._denominator, tf.float32) denominator = tf.cast(self._denominator, tf.float32)
return self._GlobalState( return self._GlobalState(self._numerator.initial_global_state(),
self._numerator.initial_global_state(), denominator) denominator)
def derive_sample_params(self, global_state): def derive_sample_params(self, global_state):
"""Implements `tensorflow_privacy.DPQuery.derive_sample_params`.""" """Implements `tensorflow_privacy.DPQuery.derive_sample_params`."""
@ -82,6 +76,7 @@ class NormalizedQuery(dp_query.SumAggregationDPQuery):
"""Implements `tensorflow_privacy.DPQuery.get_noised_result`.""" """Implements `tensorflow_privacy.DPQuery.get_noised_result`."""
noised_sum, new_sum_global_state = self._numerator.get_noised_result( noised_sum, new_sum_global_state = self._numerator.get_noised_result(
sample_state, global_state.numerator_state) sample_state, global_state.numerator_state)
def normalize(v): def normalize(v):
return tf.truediv(v, global_state.denominator) return tf.truediv(v, global_state.denominator)

View file

@ -91,11 +91,6 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
assert isinstance(self._quantile_estimator_query, assert isinstance(self._quantile_estimator_query,
dp_query.SumAggregationDPQuery) dp_query.SumAggregationDPQuery)
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
self._sum_query.set_ledger(ledger)
self._quantile_estimator_query.set_ledger(ledger)
def initial_global_state(self): def initial_global_state(self):
"""Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" """Implements `tensorflow_privacy.DPQuery.initial_global_state`."""
return self._GlobalState( return self._GlobalState(

View file

@ -22,7 +22,6 @@ from absl.testing import parameterized
import numpy as np import numpy as np
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.dp_query import quantile_adaptive_clip_sum_query from tensorflow_privacy.privacy.dp_query import quantile_adaptive_clip_sum_query
from tensorflow_privacy.privacy.dp_query import test_utils from tensorflow_privacy.privacy.dp_query import test_utils
@ -291,53 +290,6 @@ class QuantileAdaptiveClipSumQueryTest(tf.test.TestCase,
if t > 40: if t > 40:
self.assertNear(actual_clip, 5.0, 0.5) self.assertNear(actual_clip, 5.0, 0.5)
def test_ledger(self):
record1 = tf.constant([8.5])
record2 = tf.constant([-7.25])
population_size = tf.Variable(0)
selection_probability = tf.Variable(1.0)
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
initial_l2_norm_clip=10.0,
noise_multiplier=1.0,
target_unclipped_quantile=0.0,
learning_rate=1.0,
clipped_count_stddev=0.0,
expected_num_records=2.0,
geometric_update=False)
query = privacy_ledger.QueryWithLedger(query, population_size,
selection_probability)
# First sample.
tf.assign(population_size, 10)
tf.assign(selection_probability, 0.1)
_, global_state = test_utils.run_query(query, [record1, record2])
expected_queries = [[10.0, 10.0], [0.5, 0.0]]
formatted = query.ledger.get_formatted_ledger_eager()
sample_1 = formatted[0]
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sample_1.queries, expected_queries)
# Second sample.
tf.assign(population_size, 20)
tf.assign(selection_probability, 0.2)
test_utils.run_query(query, [record1, record2], global_state)
formatted = query.ledger.get_formatted_ledger_eager()
sample_1, sample_2 = formatted
self.assertAllClose(sample_1.population_size, 10.0)
self.assertAllClose(sample_1.selection_probability, 0.1)
self.assertAllClose(sample_1.queries, expected_queries)
expected_queries_2 = [[9.0, 9.0], [0.5, 0.0]]
self.assertAllClose(sample_2.population_size, 20.0)
self.assertAllClose(sample_2.selection_probability, 0.2)
self.assertAllClose(sample_2.queries, expected_queries_2)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()

View file

@ -101,10 +101,6 @@ class QuantileEstimatorQuery(dp_query.SumAggregationDPQuery):
l2_norm_clip=0.5, stddev=below_estimate_stddev), l2_norm_clip=0.5, stddev=below_estimate_stddev),
denominator=expected_num_records) denominator=expected_num_records)
def set_ledger(self, ledger):
"""Implements `tensorflow_privacy.DPQuery.set_ledger`."""
self._below_estimate_query.set_ledger(ledger)
def initial_global_state(self): def initial_global_state(self):
"""Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" """Implements `tensorflow_privacy.DPQuery.initial_global_state`."""
return self._GlobalState( return self._GlobalState(

View file

@ -21,7 +21,6 @@ from absl import logging
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
@ -166,8 +165,8 @@ def make_optimizer_class(cls):
sample_state = process_microbatch(idx, sample_state) sample_state = process_microbatch(idx, sample_state)
grad_sums, self._global_state = ( grad_sums, self._global_state = (
self._dp_sum_query.get_noised_result( self._dp_sum_query.get_noised_result(sample_state,
sample_state, self._global_state)) self._global_state))
def normalize(v): def normalize(v):
return v / tf.cast(self._num_microbatches, tf.float32) return v / tf.cast(self._num_microbatches, tf.float32)
@ -197,8 +196,8 @@ def make_optimizer_class(cls):
"""Process one microbatch (record) with privacy helper.""" """Process one microbatch (record) with privacy helper."""
self_super = super(DPOptimizerClass, self) self_super = super(DPOptimizerClass, self)
mean_loss = tf.reduce_mean(input_tensor=tf.gather( mean_loss = tf.reduce_mean(
microbatches_losses, [i])) input_tensor=tf.gather(microbatches_losses, [i]))
if hasattr(self_super, 'compute_gradients'): if hasattr(self_super, 'compute_gradients'):
# This case covers optimizers in tf.train. # This case covers optimizers in tf.train.
@ -208,8 +207,8 @@ def make_optimizer_class(cls):
compute_gradients_fn = self_super._compute_gradients # pylint: disable=protected-access compute_gradients_fn = self_super._compute_gradients # pylint: disable=protected-access
grads, _ = zip(*compute_gradients_fn( grads, _ = zip(*compute_gradients_fn(
mean_loss, var_list, gate_gradients, mean_loss, var_list, gate_gradients, aggregation_method,
aggregation_method, colocate_gradients_with_ops, grad_loss)) colocate_gradients_with_ops, grad_loss))
grads_list = list(grads) grads_list = list(grads)
sample_state = self._dp_sum_query.accumulate_record( sample_state = self._dp_sum_query.accumulate_record(
@ -218,8 +217,8 @@ def make_optimizer_class(cls):
if var_list is None: if var_list is None:
var_list = ( var_list = (
tf.trainable_variables() + tf.get_collection( tf.trainable_variables() +
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES)) tf.get_collection(tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
sample_state = self._dp_sum_query.initial_sample_state(var_list) sample_state = self._dp_sum_query.initial_sample_state(var_list)
@ -237,8 +236,8 @@ def make_optimizer_class(cls):
cond=cond_fn, body=body_fn, loop_vars=[idx, sample_state]) cond=cond_fn, body=body_fn, loop_vars=[idx, sample_state])
grad_sums, self._global_state = ( grad_sums, self._global_state = (
self._dp_sum_query.get_noised_result( self._dp_sum_query.get_noised_result(sample_state,
sample_state, self._global_state)) self._global_state))
def normalize(v): def normalize(v):
try: try:
@ -307,9 +306,7 @@ def make_gaussian_optimizer_class(cls):
``` ```
""").format( """).format(
'tf.compat.v1.train.' + cls.__name__, 'tf.compat.v1.train.' + cls.__name__, cls.__name__, cls.__name__,
cls.__name__,
cls.__name__,
'DP' + cls.__name__.replace('Optimizer', 'GaussianOptimizer')) 'DP' + cls.__name__.replace('Optimizer', 'GaussianOptimizer'))
def __init__( def __init__(
@ -317,7 +314,6 @@ def make_gaussian_optimizer_class(cls):
l2_norm_clip, l2_norm_clip,
noise_multiplier, noise_multiplier,
num_microbatches=None, num_microbatches=None,
ledger=None,
unroll_microbatches=False, unroll_microbatches=False,
*args, # pylint: disable=keyword-arg-before-vararg *args, # pylint: disable=keyword-arg-before-vararg
**kwargs): **kwargs):
@ -329,7 +325,6 @@ def make_gaussian_optimizer_class(cls):
num_microbatches: Number of microbatches into which each minibatch is num_microbatches: Number of microbatches into which each minibatch is
split. If `None`, will default to the size of the minibatch, and split. If `None`, will default to the size of the minibatch, and
per-example gradients will be computed. per-example gradients will be computed.
ledger: Defaults to `None`. An instance of `tf_privacy.PrivacyLedger`.
unroll_microbatches: If true, processes microbatches within a Python unroll_microbatches: If true, processes microbatches within a Python
loop instead of a `tf.while_loop`. Can be used if using a loop instead of a `tf.while_loop`. Can be used if using a
`tf.while_loop` raises an exception. `tf.while_loop` raises an exception.
@ -344,16 +339,9 @@ def make_gaussian_optimizer_class(cls):
dp_sum_query = gaussian_query.GaussianSumQuery( dp_sum_query = gaussian_query.GaussianSumQuery(
l2_norm_clip, l2_norm_clip * noise_multiplier) l2_norm_clip, l2_norm_clip * noise_multiplier)
if ledger: super(DPGaussianOptimizerClass,
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, self).__init__(dp_sum_query, num_microbatches, unroll_microbatches,
ledger=ledger) *args, **kwargs)
super(DPGaussianOptimizerClass, self).__init__(
dp_sum_query,
num_microbatches,
unroll_microbatches,
*args,
**kwargs)
def get_config(self): def get_config(self):
"""Creates configuration for Keras serialization. """Creates configuration for Keras serialization.
@ -370,7 +358,8 @@ def make_gaussian_optimizer_class(cls):
config.update({ config.update({
'l2_norm_clip': self._l2_norm_clip, 'l2_norm_clip': self._l2_norm_clip,
'noise_multiplier': self._noise_multiplier, 'noise_multiplier': self._noise_multiplier,
'num_microbatches': self._num_microbatches}) 'num_microbatches': self._num_microbatches
})
return config return config
@ -380,6 +369,7 @@ def make_gaussian_optimizer_class(cls):
return DPGaussianOptimizerClass return DPGaussianOptimizerClass
AdagradOptimizer = tf.train.AdagradOptimizer AdagradOptimizer = tf.train.AdagradOptimizer
AdamOptimizer = tf.train.AdamOptimizer AdamOptimizer = tf.train.AdamOptimizer
GradientDescentOptimizer = tf.train.GradientDescentOptimizer GradientDescentOptimizer = tf.train.GradientDescentOptimizer

View file

@ -22,7 +22,6 @@ import numpy as np
from six.moves import range from six.moves import range
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
from tensorflow_privacy.privacy.optimizers import dp_optimizer from tensorflow_privacy.privacy.optimizers import dp_optimizer
@ -56,13 +55,9 @@ class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(
dp_sum_query, 1e6, num_microbatches / 1e6)
opt = cls( opt = cls(
dp_sum_query, dp_sum_query, num_microbatches=num_microbatches, learning_rate=2.0)
num_microbatches=num_microbatches,
learning_rate=2.0)
self.evaluate(tf.global_variables_initializer()) self.evaluate(tf.global_variables_initializer())
# Fetch params to validate initial values # Fetch params to validate initial values
@ -85,7 +80,6 @@ class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0) opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
@ -109,7 +103,6 @@ class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[0.0]]) data0 = tf.Variable([[0.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0) dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0) opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)

View file

@ -24,7 +24,6 @@ import numpy as np
from six.moves import range from six.moves import range
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
from tensorflow_privacy.privacy.optimizers import dp_optimizer from tensorflow_privacy.privacy.optimizers import dp_optimizer
@ -51,9 +50,8 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]), ('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]),
('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]), ('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]),
('DPRMSPropOptimizer 1', dp_optimizer.DPRMSPropOptimizer, 1, ('DPRMSPropOptimizer 1', dp_optimizer.DPRMSPropOptimizer, 1,
[-2.5, -2.5]), [-2.5, -2.5]), ('DPRMSPropOptimizer 2', dp_optimizer.DPRMSPropOptimizer,
('DPRMSPropOptimizer 2', dp_optimizer.DPRMSPropOptimizer, 2, 2, [-2.5, -2.5]),
[-2.5, -2.5]),
('DPRMSPropOptimizer 4', dp_optimizer.DPRMSPropOptimizer, 4, [-2.5, -2.5]) ('DPRMSPropOptimizer 4', dp_optimizer.DPRMSPropOptimizer, 4, [-2.5, -2.5])
) )
def testBaseline(self, cls, num_microbatches, expected_answer): def testBaseline(self, cls, num_microbatches, expected_answer):
@ -62,13 +60,9 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(
dp_sum_query, 1e6, num_microbatches / 1e6)
opt = cls( opt = cls(
dp_sum_query, dp_sum_query, num_microbatches=num_microbatches, learning_rate=2.0)
num_microbatches=num_microbatches,
learning_rate=2.0)
self.evaluate(tf.global_variables_initializer()) self.evaluate(tf.global_variables_initializer())
# Fetch params to validate initial values # Fetch params to validate initial values
@ -91,7 +85,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0) opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
@ -115,7 +108,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
data0 = tf.Variable([[0.0]]) data0 = tf.Variable([[0.0]])
dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0) dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0) opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
@ -157,11 +149,8 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
vector_loss = tf.math.squared_difference(labels, preds) vector_loss = tf.math.squared_difference(labels, preds)
scalar_loss = tf.reduce_mean(input_tensor=vector_loss) scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
optimizer = dp_optimizer.DPGradientDescentOptimizer( optimizer = dp_optimizer.DPGradientDescentOptimizer(
dp_sum_query, dp_sum_query, num_microbatches=1, learning_rate=1.0)
num_microbatches=1,
learning_rate=1.0)
global_step = tf.train.get_global_step() global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=vector_loss, global_step=global_step) train_op = optimizer.minimize(loss=vector_loss, global_step=global_step)
return tf.estimator.EstimatorSpec( return tf.estimator.EstimatorSpec(
@ -201,8 +190,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
num_microbatches = 4 num_microbatches = 4
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(
dp_sum_query, 1e6, num_microbatches / 1e6)
opt = cls( opt = cls(
dp_sum_query, dp_sum_query,
@ -283,8 +270,6 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
extra_variable = tf.Variable('foo', trainable=True, dtype=tf.string) extra_variable = tf.Variable('foo', trainable=True, dtype=tf.string)
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0) dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6,
num_microbatches / 1e6)
opt = cls( opt = cls(
dp_sum_query, num_microbatches=num_microbatches, learning_rate=2.0) dp_sum_query, num_microbatches=num_microbatches, learning_rate=2.0)
@ -298,27 +283,26 @@ class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
sess.run(minimize_op) sess.run(minimize_op)
def _testWriteOutAndReload(self, optimizer_cls): def _testWriteOutAndReload(self, optimizer_cls):
optimizer = optimizer_cls(l2_norm_clip=1.0, optimizer = optimizer_cls(
noise_multiplier=0.01, l2_norm_clip=1.0, noise_multiplier=0.01, num_microbatches=1)
num_microbatches=1)
test_dir = self.get_temp_dir() test_dir = self.get_temp_dir()
model_path = os.path.join(test_dir, 'model') model_path = os.path.join(test_dir, 'model')
model = tf.keras.Sequential([tf.keras.layers.InputLayer(input_shape=(1, 1)), model = tf.keras.Sequential([
tf.keras.layers.Dense(units=1, tf.keras.layers.InputLayer(input_shape=(1, 1)),
activation='softmax')]) tf.keras.layers.Dense(units=1, activation='softmax')
model.compile(optimizer=optimizer, ])
loss=tf.keras.losses.SparseCategoricalCrossentropy( model.compile(
from_logits=True)) optimizer=optimizer,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
tf.keras.models.save_model(model, filepath=model_path, tf.keras.models.save_model(
include_optimizer=True) model, filepath=model_path, include_optimizer=True)
optimizer_cls_str = optimizer_cls.__name__ optimizer_cls_str = optimizer_cls.__name__
tf.keras.models.load_model(model_path, tf.keras.models.load_model(
custom_objects={ model_path, custom_objects={optimizer_cls_str: optimizer_cls})
optimizer_cls_str: optimizer_cls})
return return

View file

@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Training a language model (recurrent neural network) with DP-SGD optimizer. """Training a language model (recurrent neural network) with DP-SGD optimizer.
This tutorial uses a corpus of text from TensorFlow datasets unless a This tutorial uses a corpus of text from TensorFlow datasets unless a
@ -44,7 +43,6 @@ import numpy as np
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds import tensorflow_datasets as tfds
from tensorflow_privacy.privacy.analysis import privacy_ledger
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer from tensorflow_privacy.privacy.optimizers import dp_optimizer
@ -92,27 +90,20 @@ def rnn_model_fn(features, labels, mode): # pylint: disable=unused-argument
if mode == tf.estimator.ModeKeys.TRAIN: if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd: if FLAGS.dpsgd:
ledger = privacy_ledger.PrivacyLedger(
population_size=NB_TRAIN,
selection_probability=(FLAGS.batch_size / NB_TRAIN))
optimizer = dp_optimizer.DPAdamGaussianOptimizer( optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip, l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier, noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches, num_microbatches=FLAGS.microbatches,
ledger=ledger,
learning_rate=FLAGS.learning_rate, learning_rate=FLAGS.learning_rate,
unroll_microbatches=True) unroll_microbatches=True)
opt_loss = vector_loss opt_loss = vector_loss
else: else:
optimizer = tf.train.AdamOptimizer( optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss opt_loss = scalar_loss
global_step = tf.train.get_global_step() global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
return tf.estimator.EstimatorSpec(mode=mode, return tf.estimator.EstimatorSpec(
loss=scalar_loss, mode=mode, loss=scalar_loss, train_op=train_op)
train_op=train_op)
# Add evaluation metrics (for EVAL mode). # Add evaluation metrics (for EVAL mode).
elif mode == tf.estimator.ModeKeys.EVAL: elif mode == tf.estimator.ModeKeys.EVAL:
@ -122,9 +113,8 @@ def rnn_model_fn(features, labels, mode): # pylint: disable=unused-argument
labels=tf.cast(x[:, 1:], dtype=tf.int32), labels=tf.cast(x[:, 1:], dtype=tf.int32),
predictions=tf.argmax(input=logits, axis=2)) predictions=tf.argmax(input=logits, axis=2))
} }
return tf.estimator.EstimatorSpec(mode=mode, return tf.estimator.EstimatorSpec(
loss=scalar_loss, mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
eval_metric_ops=eval_metric_ops)
def load_data(): def load_data():
@ -132,13 +122,13 @@ def load_data():
if not FLAGS.data_dir: if not FLAGS.data_dir:
print('FLAGS.data_dir containing train.txt and test.txt was not specified, ' print('FLAGS.data_dir containing train.txt and test.txt was not specified, '
'using a substitute dataset from the tensorflow_datasets module.') 'using a substitute dataset from the tensorflow_datasets module.')
train_dataset = tfds.load(name='lm1b/subwords8k', train_dataset = tfds.load(
name='lm1b/subwords8k',
split=tfds.Split.TRAIN, split=tfds.Split.TRAIN,
batch_size=NB_TRAIN, batch_size=NB_TRAIN,
shuffle_files=True) shuffle_files=True)
test_dataset = tfds.load(name='lm1b/subwords8k', test_dataset = tfds.load(
split=tfds.Split.TEST, name='lm1b/subwords8k', split=tfds.Split.TEST, batch_size=10000)
batch_size=10000)
train_data = next(iter(tfds.as_numpy(train_dataset))) train_data = next(iter(tfds.as_numpy(train_dataset)))
test_data = next(iter(tfds.as_numpy(test_dataset))) test_data = next(iter(tfds.as_numpy(test_dataset)))
train_data = train_data['text'].flatten() train_data = train_data['text'].flatten()
@ -162,7 +152,8 @@ def compute_epsilon(steps):
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / NB_TRAIN sampling_probability = FLAGS.batch_size / NB_TRAIN
rdp = compute_rdp(q=sampling_probability, rdp = compute_rdp(
q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier, noise_multiplier=FLAGS.noise_multiplier,
steps=steps, steps=steps,
orders=orders) orders=orders)
@ -180,9 +171,8 @@ def main(unused_argv):
# Instantiate the tf.Estimator. # Instantiate the tf.Estimator.
conf = tf.estimator.RunConfig(save_summary_steps=1000) conf = tf.estimator.RunConfig(save_summary_steps=1000)
lm_classifier = tf.estimator.Estimator(model_fn=rnn_model_fn, lm_classifier = tf.estimator.Estimator(
model_dir=FLAGS.model_dir, model_fn=rnn_model_fn, model_dir=FLAGS.model_dir, config=conf)
config=conf)
# Create tf.Estimator input functions for the training and test data. # Create tf.Estimator input functions for the training and test data.
batch_len = FLAGS.batch_size * SEQ_LEN batch_len = FLAGS.batch_size * SEQ_LEN
@ -221,5 +211,6 @@ def main(unused_argv):
else: else:
print('Trained with vanilla non-private SGD optimizer') print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__': if __name__ == '__main__':
app.run(main) app.run(main)