more lint
This commit is contained in:
parent
f06443d50e
commit
ddf17c9091
4 changed files with 51 additions and 45 deletions
|
@ -11,21 +11,23 @@
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""Loss functions for bolton method"""
|
"""Loss functions for bolton method."""
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import losses
|
|
||||||
from tensorflow.python.keras.utils import losses_utils
|
|
||||||
from tensorflow.python.framework import ops as _ops
|
from tensorflow.python.framework import ops as _ops
|
||||||
|
from tensorflow.python.keras import losses
|
||||||
from tensorflow.python.keras.regularizers import L1L2
|
from tensorflow.python.keras.regularizers import L1L2
|
||||||
|
from tensorflow.python.keras.utils import losses_utils
|
||||||
from tensorflow.python.platform import tf_logging as logging
|
from tensorflow.python.platform import tf_logging as logging
|
||||||
|
|
||||||
|
|
||||||
class StrongConvexMixin:
|
class StrongConvexMixin:
|
||||||
"""
|
"""Strong Convex Mixin base class.
|
||||||
|
|
||||||
Strong Convex Mixin base class for any loss function that will be used with
|
Strong Convex Mixin base class for any loss function that will be used with
|
||||||
Bolton model. Subclasses must be strongly convex and implement the
|
Bolton model. Subclasses must be strongly convex and implement the
|
||||||
associated constants. They must also conform to the requirements of tf losses
|
associated constants. They must also conform to the requirements of tf losses
|
||||||
|
@ -85,7 +87,7 @@ class StrongConvexMixin:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def max_class_weight(self, class_weight, dtype):
|
def max_class_weight(self, class_weight, dtype):
|
||||||
"""the maximum weighting in class weights (max value) as a scalar tensor
|
"""The maximum weighting in class weights (max value) as a scalar tensor.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
class_weight: class weights used
|
class_weight: class weights used
|
||||||
|
@ -103,7 +105,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
reg_lambda,
|
reg_lambda,
|
||||||
C,
|
c_arg,
|
||||||
radius_constant,
|
radius_constant,
|
||||||
delta,
|
delta,
|
||||||
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||||
|
@ -117,31 +119,30 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
||||||
delta: delta value in huber loss. When to switch from quadratic to
|
delta: delta value in huber loss. When to switch from quadratic to
|
||||||
absolute deviation.
|
absolute deviation.
|
||||||
reduction: reduction type to use. See super class
|
reduction: reduction type to use. See super class
|
||||||
name: Name of the loss instance
|
|
||||||
dtype: tf datatype to use for tensor conversions.
|
dtype: tf datatype to use for tensor conversions.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Loss values per sample.
|
Loss values per sample.
|
||||||
"""
|
"""
|
||||||
if C <= 0:
|
if c_arg <= 0:
|
||||||
raise ValueError('c: {0}, should be >= 0'.format(C))
|
raise ValueError("c: {0}, should be >= 0".format(c_arg))
|
||||||
if reg_lambda <= 0:
|
if reg_lambda <= 0:
|
||||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||||
if radius_constant <= 0:
|
if radius_constant <= 0:
|
||||||
raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||||
radius_constant
|
radius_constant
|
||||||
))
|
))
|
||||||
if delta <= 0:
|
if delta <= 0:
|
||||||
raise ValueError('delta: {0}, should be >= 0'.format(
|
raise ValueError("delta: {0}, should be >= 0".format(
|
||||||
delta
|
delta
|
||||||
))
|
))
|
||||||
self.C = C # pylint: disable=invalid-name
|
self.C = c_arg # pylint: disable=invalid-name
|
||||||
self.delta = delta
|
self.delta = delta
|
||||||
self.radius_constant = radius_constant
|
self.radius_constant = radius_constant
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||||
super(StrongConvexHuber, self).__init__(
|
super(StrongConvexHuber, self).__init__(
|
||||||
name='strongconvexhuber',
|
name="strongconvexhuber",
|
||||||
reduction=reduction,
|
reduction=reduction,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -213,53 +214,53 @@ class StrongConvexBinaryCrossentropy(
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
reg_lambda,
|
reg_lambda,
|
||||||
C,
|
c_arg,
|
||||||
radius_constant,
|
radius_constant,
|
||||||
from_logits=True,
|
from_logits=True,
|
||||||
label_smoothing=0,
|
label_smoothing=0,
|
||||||
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||||
dtype=tf.float32):
|
dtype=tf.float32):
|
||||||
"""
|
"""StrongConvexBinaryCrossentropy class.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
reg_lambda: Weight regularization constant
|
reg_lambda: Weight regularization constant
|
||||||
C: Penalty parameter C of the loss term
|
c_arg: Penalty parameter C of the loss term
|
||||||
radius_constant: constant defining the length of the radius
|
radius_constant: constant defining the length of the radius
|
||||||
reduction: reduction type to use. See super class
|
|
||||||
from_logits: True if the input are unscaled logits. False if they are
|
from_logits: True if the input are unscaled logits. False if they are
|
||||||
already scaled.
|
already scaled.
|
||||||
label_smoothing: amount of smoothing to perform on labels
|
label_smoothing: amount of smoothing to perform on labels
|
||||||
relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the
|
relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the
|
||||||
impact of this parameter's effect on privacy is not known and thus the
|
impact of this parameter's effect on privacy is not known and thus the
|
||||||
default should be used.
|
default should be used.
|
||||||
name: Name of the loss instance
|
reduction: reduction type to use. See super class
|
||||||
dtype: tf datatype to use for tensor conversions.
|
dtype: tf datatype to use for tensor conversions.
|
||||||
"""
|
"""
|
||||||
if label_smoothing != 0:
|
if label_smoothing != 0:
|
||||||
logging.warning('The impact of label smoothing on privacy is unknown. '
|
logging.warning("The impact of label smoothing on privacy is unknown. "
|
||||||
'Use label smoothing at your own risk as it may not '
|
"Use label smoothing at your own risk as it may not "
|
||||||
'guarantee privacy.')
|
"guarantee privacy.")
|
||||||
|
|
||||||
if reg_lambda <= 0:
|
if reg_lambda <= 0:
|
||||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||||
if C <= 0:
|
if c_arg <= 0:
|
||||||
raise ValueError('c: {0}, should be >= 0'.format(C))
|
raise ValueError("c: {0}, should be >= 0".format(c_arg))
|
||||||
if radius_constant <= 0:
|
if radius_constant <= 0:
|
||||||
raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||||
radius_constant
|
radius_constant
|
||||||
))
|
))
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
self.C = C # pylint: disable=invalid-name
|
self.C = c_arg # pylint: disable=invalid-name
|
||||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||||
super(StrongConvexBinaryCrossentropy, self).__init__(
|
super(StrongConvexBinaryCrossentropy, self).__init__(
|
||||||
reduction=reduction,
|
reduction=reduction,
|
||||||
name='strongconvexbinarycrossentropy',
|
name="strongconvexbinarycrossentropy",
|
||||||
from_logits=from_logits,
|
from_logits=from_logits,
|
||||||
label_smoothing=label_smoothing,
|
label_smoothing=label_smoothing,
|
||||||
)
|
)
|
||||||
self.radius_constant = radius_constant
|
self.radius_constant = radius_constant
|
||||||
|
|
||||||
def call(self, y_true, y_pred):
|
def call(self, y_true, y_pred):
|
||||||
"""Computes loss
|
"""Computes loss.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
y_true: Ground truth values.
|
y_true: Ground truth values.
|
||||||
|
|
|
@ -136,6 +136,10 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
||||||
See the bolton paper for more description.
|
See the bolton paper for more description.
|
||||||
noise_distribution: the distribution to pull noise from.
|
noise_distribution: the distribution to pull noise from.
|
||||||
steps_per_epoch:
|
steps_per_epoch:
|
||||||
|
kwargs: kwargs to keras Model.fit. See super.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
output
|
||||||
"""
|
"""
|
||||||
if class_weight is None:
|
if class_weight is None:
|
||||||
class_weight_ = self.calculate_class_weights(class_weight)
|
class_weight_ = self.calculate_class_weights(class_weight)
|
||||||
|
|
|
@ -32,10 +32,10 @@ from privacy.bolton.optimizers import Bolton
|
||||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
"""Test loss function for testing Bolton model."""
|
"""Test loss function for testing Bolton model."""
|
||||||
|
|
||||||
def __init__(self, reg_lambda, C_arg, radius_constant, name='test'):
|
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
|
||||||
super(TestLoss, self).__init__(name=name)
|
super(TestLoss, self).__init__(name=name)
|
||||||
self.reg_lambda = reg_lambda
|
self.reg_lambda = reg_lambda
|
||||||
self.C = C_arg # pylint: disable=invalid-name
|
self.C = c_arg # pylint: disable=invalid-name
|
||||||
self.radius_constant = radius_constant
|
self.radius_constant = radius_constant
|
||||||
|
|
||||||
def radius(self):
|
def radius(self):
|
||||||
|
@ -506,6 +506,7 @@ class FitTests(keras_parameterized.TestCase):
|
||||||
'num_classes': 2,
|
'num_classes': 2,
|
||||||
'err_msg': 'Detected array length:'},
|
'err_msg': 'Detected array length:'},
|
||||||
])
|
])
|
||||||
|
|
||||||
def test_class_errors(self,
|
def test_class_errors(self,
|
||||||
class_weights,
|
class_weights,
|
||||||
class_counts,
|
class_counts,
|
||||||
|
|
|
@ -68,10 +68,10 @@ class TestModel(Model): # pylint: disable=abstract-method
|
||||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
"""Test loss function for testing Bolton model."""
|
"""Test loss function for testing Bolton model."""
|
||||||
|
|
||||||
def __init__(self, reg_lambda, C_arg, radius_constant, name='test'):
|
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
|
||||||
super(TestLoss, self).__init__(name=name)
|
super(TestLoss, self).__init__(name=name)
|
||||||
self.reg_lambda = reg_lambda
|
self.reg_lambda = reg_lambda
|
||||||
self.C = C_arg # pylint: disable=invalid-name
|
self.C = c_arg # pylint: disable=invalid-name
|
||||||
self.radius_constant = radius_constant
|
self.radius_constant = radius_constant
|
||||||
|
|
||||||
def radius(self):
|
def radius(self):
|
||||||
|
@ -80,7 +80,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
W is a convex set that forms the hypothesis space.
|
W is a convex set that forms the hypothesis space.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
radius
|
a tensor
|
||||||
"""
|
"""
|
||||||
return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32)
|
return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32)
|
||||||
|
|
||||||
|
@ -107,7 +107,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
|
||||||
class_weight: class weights used
|
class_weight: class weights used
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
L
|
constant L
|
||||||
"""
|
"""
|
||||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue