Implement and test a registry function for tfm.nlp.layers.PositionEmbedding.

PiperOrigin-RevId: 565450719
This commit is contained in:
A. Unique TensorFlower 2023-09-14 12:54:36 -07:00
parent c7db4fa8cb
commit e20c92243a
4 changed files with 260 additions and 0 deletions

View file

@ -98,6 +98,31 @@ py_test(
], ],
) )
py_library(
name = "nlp_position_embedding",
srcs = ["nlp_position_embedding.py"],
srcs_version = "PY3",
deps = [
"//tensorflow_privacy/privacy/fast_gradient_clipping:common_manip_utils",
"//tensorflow_privacy/privacy/fast_gradient_clipping:type_aliases",
],
)
py_test(
name = "nlp_position_embedding_test",
srcs = ["nlp_position_embedding_test.py"],
python_version = "PY3",
shard_count = 6,
srcs_version = "PY3",
deps = [
":dense",
":nlp_position_embedding",
"//tensorflow_privacy/privacy/fast_gradient_clipping:clip_grads",
"//tensorflow_privacy/privacy/fast_gradient_clipping:common_test_utils",
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry",
],
)
py_library( py_library(
name = "layer_normalization", name = "layer_normalization",
srcs = ["layer_normalization.py"], srcs = ["layer_normalization.py"],

View file

@ -0,0 +1,65 @@
# Copyright 2023, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast clipping function for `tfm.nlp.layers.OnDeviceEmbedding`."""
from collections.abc import Mapping, Sequence
from typing import Any, Optional
import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils
from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases
def nlp_position_embedding_layer_computation(
layer_instance: tf.keras.layers.Layer,
input_args: Sequence[Any],
input_kwargs: Mapping[str, Any],
tape: tf.GradientTape,
num_microbatches: Optional[tf.Tensor] = None,
) -> type_aliases.RegistryFunctionOutput:
"""Registry function for `tfm.nlp.layers.PositionEmbedding`.
Args:
layer_instance: A `tfm.nlp.layers.PositionEmbedding` instance.
input_args: See `dense_layer_computation()` in `dense.py`.
input_kwargs: See `dense_layer_computation()` in `dense.py`.
tape: See `dense_layer_computation()` in `dense.py`.
num_microbatches: See `dense_layer_computation()` in `dense.py`.
Returns:
See `dense_layer_computation()` in `dense.py`.
"""
if input_kwargs:
raise ValueError("Embedding layer calls should not receive kwargs.")
del input_kwargs
if len(input_args) != 1:
raise ValueError("Only layer inputs of length 1 are permitted.")
input_ids = tf.cast(*input_args, tf.int32)
base_vars = layer_instance(input_ids)
tape.watch(base_vars)
def sqr_norm_fn(grads):
broadcast_axes = list(range(len(grads.shape)))
del broadcast_axes[layer_instance._seq_axis] # pylint: disable=protected-access
del broadcast_axes[-1], broadcast_axes[0]
reduced_grads = tf.reduce_sum(grads, axis=broadcast_axes)
if num_microbatches is not None:
reduced_grads = common_manip_utils.maybe_add_microbatch_axis(
reduced_grads,
num_microbatches,
)
reduced_grads = tf.reduce_sum(reduced_grads, axis=1)
reduction_axes = tf.range(1, tf.rank(reduced_grads))
return tf.reduce_sum(tf.square(reduced_grads), axis=reduction_axes)
return base_vars, base_vars, sqr_norm_fn

View file

@ -0,0 +1,140 @@
# Copyright 2023, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import parameterized
import tensorflow as tf
import tensorflow_models as tfm
from tensorflow_privacy.privacy.fast_gradient_clipping import common_test_utils
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import dense
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import nlp_position_embedding
def get_nlp_position_embedding_model_generators():
return {
'func1': common_test_utils.make_one_layer_functional_model,
}
def get_nlp_position_embedding_inputs():
"""Generates input_data."""
# (input_dims, max_length, seq_axis)
return [
# Rank-2 Tensors
([3, 2], 6, 1),
([3, 2], 3, 1),
# Rank-3 Tensors
([4, 3, 2], 8, 1),
([4, 3, 2], 4, 1),
([4, 3, 2], 6, 2),
([4, 3, 2], 3, 2),
]
def get_nlp_position_embedding_layer_registries():
dbl_registry = layer_registry.LayerRegistry()
dbl_registry.insert(tf.keras.layers.Dense, dense.dense_layer_computation)
dbl_registry.insert(
tfm.nlp.layers.PositionEmbedding,
nlp_position_embedding.nlp_position_embedding_layer_computation,
)
return {
'embed_and_dense': dbl_registry,
}
class GradNormTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super().setUp()
self.strategy = tf.distribute.get_strategy()
self.using_tpu = False
# TODO(weiweikong): Test sparse input tensors when the GitHub CI environment
# supports them for embeddings.
@parameterized.product(
input_data=get_nlp_position_embedding_inputs(),
model_name=list(get_nlp_position_embedding_model_generators()),
layer_registry_name=list(get_nlp_position_embedding_layer_registries()),
num_microbatches=[None, 2],
is_eager=[True, False],
)
def test_gradient_norms_on_various_models(
self,
input_data,
model_name,
layer_registry_name,
num_microbatches,
is_eager,
):
# Parse inputs to generate test data.
input_dims, max_length, seq_axis = input_data
# Load shared assets to all devices.
with self.strategy.scope():
def embed_layer_generator(a, b):
del a, b # Unused input variables.
return tfm.nlp.layers.PositionEmbedding(
max_length=max_length,
seq_axis=seq_axis,
)
batch_size = 6
dummy_output_dims = [1]
example_size = tf.reduce_prod(input_dims)
example_values = tf.range(batch_size * example_size, dtype=tf.float32)
x_batch = tf.reshape(example_values, [batch_size] + input_dims)
model = common_test_utils.get_model_from_generator(
model_generator=(
get_nlp_position_embedding_model_generators()[model_name]
),
layer_generator=embed_layer_generator,
input_dims=input_dims,
output_dims=dummy_output_dims,
is_eager=is_eager,
)
# Define the main testing ops. These may be later compiled to a Graph op.
def test_op():
return common_test_utils.get_computed_and_true_norms_from_model(
model=model,
per_example_loss_fn=None,
num_microbatches=num_microbatches,
x_batch=x_batch,
registry=(
get_nlp_position_embedding_layer_registries()[layer_registry_name]
),
partial=None,
)
# TPUs can only run `tf.function`-decorated functions.
if self.using_tpu:
test_op = tf.function(test_op, autograph=False)
# Set up the device ops and run the test.
computed_norms, true_norms = self.strategy.run(test_op)
# TPUs return replica contexts, which must be unwrapped.
if self.using_tpu:
common_test_utils.assert_replica_values_are_close(self, computed_norms)
common_test_utils.assert_replica_values_are_close(self, true_norms)
computed_norms = computed_norms.values[0]
true_norms = true_norms.values[0]
expected_size = num_microbatches or batch_size
self.assertEqual(tf.shape(computed_norms)[0], expected_size)
self.assertAllClose(computed_norms, true_norms, rtol=1e-3, atol=1e-2)
if __name__ == '__main__':
tf.test.main()

View file

@ -0,0 +1,30 @@
# Copyright 2023, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import common_test_utils
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import nlp_position_embedding_test
class GradNormTpuTest(nlp_position_embedding_test.GradNormTest):
def setUp(self):
super(nlp_position_embedding_test.GradNormTest, self).setUp()
self.strategy = common_test_utils.create_tpu_strategy()
self.assertIn('TPU', self.strategy.extended.worker_devices[0])
self.using_tpu = True
if __name__ == '__main__':
tf.test.main()