Sparsity Preserving DP-SGD in TF Privacy
Add support for adding sparsity preserving noise in add_aggregate_noise See https://research.google/blog/sparsity-preserving-differentially-private-training/ for more details on the algorithm. PiperOrigin-RevId: 662148309
This commit is contained in:
parent
09c68750d7
commit
e42b574465
3 changed files with 172 additions and 10 deletions
|
@ -84,6 +84,7 @@ py_library(
|
|||
py_library(
|
||||
name = "noise_utils",
|
||||
srcs = ["noise_utils.py"],
|
||||
deps = ["//tensorflow_privacy/privacy/sparsity_preserving_noise:sparse_noise_utils"],
|
||||
)
|
||||
|
||||
py_test(
|
||||
|
|
|
@ -14,10 +14,21 @@
|
|||
"""Utility functions that help in adding noise to gradients."""
|
||||
|
||||
from collections.abc import Sequence
|
||||
import dataclasses
|
||||
from typing import Literal, Optional
|
||||
|
||||
from absl import logging
|
||||
import tensorflow as tf
|
||||
from tensorflow_privacy.privacy.sparsity_preserving_noise import sparse_noise_utils
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class SparsityPreservingNoiseConfig:
|
||||
"""Configuration for adding noise to gradients."""
|
||||
|
||||
sparse_noise_multiplier: float = 0.0
|
||||
sparse_selection_threshold: int = 0
|
||||
sparse_contribution_counts: Optional[Sequence[tf.SparseTensor]] = None
|
||||
|
||||
|
||||
def _infer_loss_reduction_type(model: tf.keras.Model):
|
||||
|
@ -44,21 +55,53 @@ def _infer_loss_reduction_type(model: tf.keras.Model):
|
|||
)
|
||||
|
||||
|
||||
def _add_dense_aggregate_noise(
|
||||
grad: tf.Tensor,
|
||||
noise_multiplier: float,
|
||||
sensitivity: float,
|
||||
) -> tf.Tensor:
|
||||
"""Adds dense noise to a dense gradient."""
|
||||
return grad + tf.random.normal(
|
||||
tf.shape(grad), mean=0.0, stddev=noise_multiplier * sensitivity
|
||||
)
|
||||
|
||||
|
||||
def _add_sparse_aggregate_noise(
|
||||
grad: tf.IndexedSlices,
|
||||
contribution_counts: tf.SparseTensor,
|
||||
noise_multiplier: float,
|
||||
noise_multiplier_sparse: float,
|
||||
sensitivity: float,
|
||||
sparse_selection_threshold: int,
|
||||
) -> tf.IndexedSlices:
|
||||
"""Adds sparse noise to a sparse gradient."""
|
||||
return sparse_noise_utils.add_sparse_noise(
|
||||
grad=grad,
|
||||
contribution_counts=contribution_counts,
|
||||
noise_multiplier=noise_multiplier,
|
||||
noise_multiplier_sparse=noise_multiplier_sparse,
|
||||
l2_norm_clip=sensitivity,
|
||||
threshold=sparse_selection_threshold,
|
||||
)
|
||||
|
||||
|
||||
def add_aggregate_noise(
|
||||
clipped_grads: list[tf.Tensor],
|
||||
clipped_grads: list[tf.Tensor | tf.IndexedSlices],
|
||||
batch_size: tf.Tensor,
|
||||
l2_norm_clip: float,
|
||||
noise_multiplier: float,
|
||||
loss_reduction: Optional[Literal['mean', 'sum']] = None,
|
||||
loss_model: Optional[tf.keras.Model] = None,
|
||||
) -> Sequence[tf.Tensor]:
|
||||
sparse_noise_config: Optional[SparsityPreservingNoiseConfig] = None,
|
||||
) -> Sequence[tf.Tensor | tf.IndexedSlices]:
|
||||
"""Adds noise to a collection of clipped gradients.
|
||||
|
||||
The magnitude of the noise depends on the aggregation strategy of the
|
||||
input model's loss function.
|
||||
|
||||
Args:
|
||||
clipped_grads: A list of `tf.Tensor`s representing the clipped gradients.
|
||||
clipped_grads: A list of `tf.Tensor`s or `tf.IndexedSlices`s representing
|
||||
the clipped gradients.
|
||||
batch_size: The batch size. Used for normalizing the noise when
|
||||
`loss_reduction` is 'sum'.
|
||||
l2_norm_clip: Clipping norm (max L2 norm of each gradient).
|
||||
|
@ -68,11 +111,14 @@ def add_aggregate_noise(
|
|||
aggregation type must be inferred from `input_model.loss`.
|
||||
loss_model: An optional `tf.keras.Model` used to infer the loss reduction
|
||||
strategy from if `loss_reduction` is `None`.
|
||||
sparse_noise_config: A `SparsityPreservingNoiseConfig` instance containing
|
||||
the configuration for adding sparse noise. If None, all noise added is
|
||||
dense.
|
||||
|
||||
Returns:
|
||||
A list of tensors containing the clipped gradients, but with the right
|
||||
amount of Gaussian noise added to them (depending on the reduction
|
||||
strategy of the loss function).
|
||||
amount of Gaussian or sparse Gaussain noise added to them (depending on
|
||||
the reduction strategy of the loss function).
|
||||
|
||||
Raises:
|
||||
ValueError: If both `loss_model` and `loss_reduction` are `None` or if
|
||||
|
@ -103,13 +149,36 @@ def add_aggregate_noise(
|
|||
'Assuming that the model loss reduction is `SUM_OVER_BATCH_SIZE`.'
|
||||
)
|
||||
|
||||
if sparse_noise_config is None:
|
||||
sparse_contribution_counts = tf.nest.map_structure(
|
||||
lambda x: None, clipped_grads
|
||||
)
|
||||
else:
|
||||
sparse_contribution_counts = sparse_noise_config.sparse_contribution_counts
|
||||
|
||||
scale = l2_norm_clip
|
||||
if loss_reduction == 'mean':
|
||||
scale /= tf.cast(batch_size, tf.float32)
|
||||
|
||||
def add_noise(g):
|
||||
return g + tf.random.normal(
|
||||
tf.shape(g), mean=0.0, stddev=noise_multiplier * scale
|
||||
def add_noise(grad, contribution_counts):
|
||||
if (
|
||||
sparse_noise_config is not None
|
||||
and isinstance(grad, tf.IndexedSlices)
|
||||
and contribution_counts is not None
|
||||
):
|
||||
return _add_sparse_aggregate_noise(
|
||||
grad=grad,
|
||||
contribution_counts=contribution_counts,
|
||||
noise_multiplier=noise_multiplier,
|
||||
noise_multiplier_sparse=sparse_noise_config.sparse_noise_multiplier,
|
||||
sensitivity=scale,
|
||||
sparse_selection_threshold=sparse_noise_config.sparse_selection_threshold,
|
||||
)
|
||||
else:
|
||||
return _add_dense_aggregate_noise(
|
||||
grad=grad, noise_multiplier=noise_multiplier, sensitivity=scale
|
||||
)
|
||||
|
||||
return tf.nest.map_structure(add_noise, clipped_grads)
|
||||
return tf.nest.map_structure(
|
||||
add_noise, clipped_grads, sparse_contribution_counts
|
||||
)
|
||||
|
|
|
@ -70,3 +70,95 @@ class NoiseUtilsTest(tf.test.TestCase, parameterized.TestCase):
|
|||
computed_std = np.std(noised_grads[0] - clipped_grads[0])
|
||||
expected_std = l2_norm_clip * noise_multiplier * scale
|
||||
self.assertNear(computed_std, expected_std, 0.1 * expected_std)
|
||||
|
||||
@parameterized.product(
|
||||
l2_norm_clip=[3.0, 5.0],
|
||||
noise_multiplier=[2.0, 4.0],
|
||||
sparse_noise_multiplier=[1.0],
|
||||
batch_size=[1, 2, 10],
|
||||
model_fn_reduction=[None, 'auto', 'sum_over_batch_size', 'sum'],
|
||||
noise_fn_reduction=[None, 'mean', 'sum'],
|
||||
)
|
||||
def test_sparse_noise_is_computed_correctly(
|
||||
self,
|
||||
l2_norm_clip,
|
||||
noise_multiplier,
|
||||
sparse_noise_multiplier,
|
||||
batch_size,
|
||||
model_fn_reduction,
|
||||
noise_fn_reduction,
|
||||
):
|
||||
# Skip invalid combinations.
|
||||
if model_fn_reduction is None and noise_fn_reduction is None:
|
||||
return
|
||||
if model_fn_reduction is not None and noise_fn_reduction is not None:
|
||||
return
|
||||
# Make an simple model container for storing the loss.
|
||||
if model_fn_reduction is not None:
|
||||
linear_model = tf.keras.Sequential([tf.keras.layers.Dense(1)])
|
||||
linear_model.compile(
|
||||
loss=tf.keras.losses.MeanSquaredError(reduction=model_fn_reduction)
|
||||
)
|
||||
else:
|
||||
linear_model = None
|
||||
# The main computation is done on a deterministic dummy vector.
|
||||
num_units = 100
|
||||
dense_grad = tf.expand_dims(np.arange(num_units, dtype=np.float32), axis=-1)
|
||||
sparse_grad = tf.IndexedSlices(
|
||||
values=tf.ones((3, 4)),
|
||||
indices=tf.constant([0, 3, 5]),
|
||||
dense_shape=tf.constant([8, 4]),
|
||||
)
|
||||
sparse_grad_contribution_counts = tf.SparseTensor(
|
||||
indices=[[0], [3], [5]],
|
||||
values=[10.0, 10.0, 20.0],
|
||||
dense_shape=[8],
|
||||
)
|
||||
|
||||
sparse_noise_config = noise_utils.SparsityPreservingNoiseConfig(
|
||||
sparse_noise_multiplier=sparse_noise_multiplier,
|
||||
sparse_selection_threshold=8,
|
||||
sparse_contribution_counts=[None, sparse_grad_contribution_counts],
|
||||
)
|
||||
|
||||
sparse_noised_grad, dense_noised_grad = noise_utils.add_aggregate_noise(
|
||||
clipped_grads=[dense_grad, sparse_grad],
|
||||
batch_size=batch_size,
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
loss_model=linear_model,
|
||||
sparse_noise_config=sparse_noise_config,
|
||||
)
|
||||
self.assertContainsSubset(
|
||||
sparse_grad.indices.numpy().tolist(),
|
||||
sparse_noised_grad.indices.numpy().tolist(),
|
||||
)
|
||||
sparse_noised_grad_dense = tf.scatter_nd(
|
||||
tf.reshape(sparse_noised_grad.indices, (-1, 1)),
|
||||
sparse_noised_grad.values,
|
||||
shape=(8, 4),
|
||||
).numpy()
|
||||
sparse_noised_grad_valid_indices = sparse_noised_grad_dense[
|
||||
sparse_grad.indices.numpy()
|
||||
]
|
||||
sparse_grad_values = sparse_grad.values.numpy()
|
||||
self.assertTrue(
|
||||
np.all(
|
||||
np.not_equal(sparse_noised_grad_valid_indices, sparse_grad_values)
|
||||
)
|
||||
)
|
||||
scale = (
|
||||
1.0
|
||||
if noise_fn_reduction == 'sum' or model_fn_reduction == 'sum'
|
||||
else 1.0 / batch_size
|
||||
)
|
||||
# The only measure that varies is the standard deviation of the variation.
|
||||
expected_std = l2_norm_clip * noise_multiplier * scale
|
||||
|
||||
sparse_computed_std = np.std(
|
||||
sparse_noised_grad_valid_indices - sparse_grad_values
|
||||
)
|
||||
self.assertNear(sparse_computed_std, expected_std, 0.1 * expected_std)
|
||||
|
||||
dense_computed_std = np.std(dense_noised_grad - dense_grad)
|
||||
self.assertNear(dense_computed_std, expected_std, 0.1 * expected_std)
|
||||
|
|
Loading…
Reference in a new issue