diff --git a/tensorflow_privacy/privacy/membership_inference_attack/data_structures.py b/tensorflow_privacy/privacy/membership_inference_attack/data_structures.py index 2601b1e..f915f55 100644 --- a/tensorflow_privacy/privacy/membership_inference_attack/data_structures.py +++ b/tensorflow_privacy/privacy/membership_inference_attack/data_structures.py @@ -559,15 +559,37 @@ class SingleRiskScoreResult: recall_list.append(true_positive_normalized) return np.array(meaningful_threshold_list), np.array(precision_list), np.array(recall_list) - def print_results(self, threshold_list=np.array([1,0.9,0.8,0.7,0.6,0.5])): + def collect_results(self, threshold_list=np.array([1,0.9,0.8,0.7,0.6,0.5])): """ The privacy risk score (from 0 to 1) represents each sample's probability of being in the training set. Here, we choose a list of threshold values from 0.5 (uncertain of training or test) to 1 (100% certain of training) to compute corresponding attack precision and recall. """ meaningful_threshold_list, precision_list, recall_list = self.attack_with_varied_thresholds(threshold_list) + summary = [] + summary.append('\nPrivacy risk score analysis over slice: \"%s\"' % + str(self.slice_spec)) for i in range(len(meaningful_threshold_list)): - print(f"with {meaningful_threshold_list[i]} as the threshold on privacy risk score, the precision-recall pair is {(precision_list[i], recall_list[i])}") - return + summary.append(' with %.5f as the threshold on privacy risk score, the precision-recall pair is (%.5f, %.5f)' % + (meaningful_threshold_list[i], precision_list[i], recall_list[i])) + return summary + + +@dataclass +class RiskScoreResults: + """Privacy risk score results from multiple data slices. + """ + + risk_score_results: Iterable[SingleRiskScoreResult] + + def summary(self): + """ return the summary of privacy risk score analysis on all given data slices + """ + summary = [] + for single_result in self.risk_score_results: + single_summary = single_result.collect_results() + for line in single_summary: + summary.append(line) + return '\n'.join(summary) @dataclass diff --git a/tensorflow_privacy/privacy/membership_inference_attack/membership_inference_attack.py b/tensorflow_privacy/privacy/membership_inference_attack/membership_inference_attack.py index da8381a..ccecbd5 100644 --- a/tensorflow_privacy/privacy/membership_inference_attack/membership_inference_attack.py +++ b/tensorflow_privacy/privacy/membership_inference_attack/membership_inference_attack.py @@ -35,6 +35,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SingleSliceSpec from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SingleRiskScoreResult +from tensorflow_privacy.privacy.membership_inference_attack.data_structures import RiskScoreResults from tensorflow_privacy.privacy.membership_inference_attack.dataset_slicing import get_single_slice_specs from tensorflow_privacy.privacy.membership_inference_attack.dataset_slicing import get_slice @@ -223,7 +224,7 @@ def run_seq2seq_attack(attack_input: Seq2SeqAttackInputData, def _compute_privacy_risk_score(attack_input: AttackInputData, - num_bins: int = 15): + num_bins: int = 15) -> SingleRiskScoreResult: """compute each individual point's likelihood of being a member (https://arxiv.org/abs/2003.10595) Args: attack_input: input data for compute privacy risk scores @@ -272,6 +273,34 @@ def _compute_privacy_risk_score(attack_input: AttackInputData, test_risk_scores=test_risk_scores) +def privacy_risk_score_analysis(attack_input: AttackInputData, + slicing_spec: SlicingSpec = None) -> RiskScoreResults: + + """Perform privacy risk score analysis on all given slice types + + Args: + attack_input: input data for compute privacy risk scores + slicing_spec: specifies attack_input slices + + Returns: + the privacy risk score results. + """ + attack_input.validate() + risk_score_results = [] + + if slicing_spec is None: + slicing_spec = SlicingSpec(entire_dataset=True) + num_classes = None + if slicing_spec.by_class: + num_classes = attack_input.num_classes + input_slice_specs = get_single_slice_specs(slicing_spec, num_classes) + for single_slice_spec in input_slice_specs: + attack_input_slice = get_slice(attack_input, single_slice_spec) + risk_score_results.append(_compute_privacy_risk_score(attack_input_slice)) + + return RiskScoreResults(risk_score_results=risk_score_results) + + def _compute_missing_privacy_report_metadata( metadata: PrivacyReportMetadata, attack_input: AttackInputData) -> PrivacyReportMetadata: