Working bolton model without unit tests.
-- moving to Bolton Optimizer Model is now just a convenient wrapper and example for users. Optimizer holds ALL Bolton privacy requirements. Optimizer is used as a context manager, and must be passed the model's layers. Unit tests incomplete, committing for visibility into the design.
This commit is contained in:
parent
751eaead54
commit
ec18db5ec5
5 changed files with 913 additions and 345 deletions
|
@ -18,23 +18,17 @@ from __future__ import division
|
|||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from tensorflow.python.keras.optimizer_v2 import adam
|
||||
from tensorflow.python.keras.optimizer_v2 import adagrad
|
||||
from tensorflow.python.keras.optimizer_v2 import gradient_descent
|
||||
from tensorflow.python.keras import losses
|
||||
from tensorflow.python.framework import test_util
|
||||
from privacy.bolton import model
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from absl.testing import parameterized
|
||||
from privacy.bolton.loss import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolton.loss import StrongConvexHuber
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from absl.testing import parameterized
|
||||
from absl.testing import absltest
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
|
||||
|
||||
class StrongConvexTests(keras_parameterized.TestCase):
|
||||
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||
"""Tests for the StrongConvexMixin"""
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta not implemented',
|
||||
'fn': 'beta',
|
||||
|
@ -50,6 +44,12 @@ class StrongConvexTests(keras_parameterized.TestCase):
|
|||
'args': []},
|
||||
])
|
||||
def test_not_implemented(self, fn, args):
|
||||
"""Test that the given fn's are not implemented on the mixin.
|
||||
|
||||
Args:
|
||||
fn: fn on Mixin to test
|
||||
args: arguments to fn of Mixin
|
||||
"""
|
||||
with self.assertRaises(NotImplementedError):
|
||||
loss = StrongConvexMixin()
|
||||
getattr(loss, fn, None)(*args)
|
||||
|
@ -60,6 +60,12 @@ class StrongConvexTests(keras_parameterized.TestCase):
|
|||
'args': []},
|
||||
])
|
||||
def test_return_none(self, fn, args):
|
||||
"""Test that fn of Mixin returns None
|
||||
|
||||
Args:
|
||||
fn: fn of Mixin to test
|
||||
args: arguments to fn of Mixin
|
||||
"""
|
||||
loss = StrongConvexMixin()
|
||||
ret = getattr(loss, fn, None)(*args)
|
||||
self.assertEqual(ret, None)
|
||||
|
@ -71,44 +77,56 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
},
|
||||
])
|
||||
def test_init_params(self, reg_lambda, c, radius_constant):
|
||||
def test_init_params(self, reg_lambda, C, radius_constant):
|
||||
"""Test initialization for given arguments
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant)
|
||||
loss = StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
self.assertIsInstance(loss, StrongConvexBinaryCrossentropy)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'c': -1,
|
||||
'C': -1,
|
||||
'radius_constant': 1
|
||||
},
|
||||
{'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'C': 1,
|
||||
'radius_constant': -1
|
||||
},
|
||||
{'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'c': 1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, c, radius_constant):
|
||||
def test_bad_init_params(self, reg_lambda, C, radius_constant):
|
||||
"""Test invalid domain for given params. Should return ValueError
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
with self.assertRaises(ValueError):
|
||||
loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant)
|
||||
StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
# [] for compatibility with tensorflow loss calculation
|
||||
{'testcase_name': 'both positive',
|
||||
'logits': [10000],
|
||||
'y_true': [1],
|
||||
'result': 0,
|
||||
'logits': [10000],
|
||||
'y_true': [1],
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'positive gradient negative logits',
|
||||
'logits': [-10000],
|
||||
|
@ -127,6 +145,12 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, result):
|
||||
"""Test the call method to ensure it returns the correct value
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
result: correct loss calculation value
|
||||
"""
|
||||
logits = tf.Variable(logits, False, dtype=tf.float32)
|
||||
y_true = tf.Variable(y_true, False, dtype=tf.float32)
|
||||
loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1)
|
||||
|
@ -160,6 +184,13 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
"""Test that fn of BinaryCrossentropy loss returns the correct result
|
||||
Args:
|
||||
init_args: init values for loss instance
|
||||
fn: the fn to test
|
||||
args: the arguments to above function
|
||||
result: the correct result from the fn
|
||||
"""
|
||||
loss = StrongConvexBinaryCrossentropy(*init_args)
|
||||
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
|
||||
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
|
||||
|
@ -183,6 +214,12 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
"""Test initialization for given arguments
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta)
|
||||
self.assertIsInstance(loss, StrongConvexHuber)
|
||||
|
@ -214,18 +251,24 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
"""Test invalid domain for given params. Should return ValueError
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
with self.assertRaises(ValueError):
|
||||
loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta)
|
||||
StrongConvexHuber(reg_lambda, c, radius_constant, delta)
|
||||
|
||||
# test the bounds and test varied delta's
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary',
|
||||
'logits': 2.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
'logits': 2.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary',
|
||||
'logits': 1.9,
|
||||
|
@ -277,6 +320,12 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, delta, result):
|
||||
"""Test the call method to ensure it returns the correct value
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
result: correct loss calculation value
|
||||
"""
|
||||
logits = tf.Variable(logits, False, dtype=tf.float32)
|
||||
y_true = tf.Variable(y_true, False, dtype=tf.float32)
|
||||
loss = StrongConvexHuber(0.00001, 1, 1, delta)
|
||||
|
@ -310,6 +359,13 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
"""Test that fn of BinaryCrossentropy loss returns the correct result
|
||||
Args:
|
||||
init_args: init values for loss instance
|
||||
fn: the fn to test
|
||||
args: the arguments to above function
|
||||
result: the correct result from the fn
|
||||
"""
|
||||
loss = StrongConvexHuber(*init_args)
|
||||
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
|
||||
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
|
||||
|
@ -322,4 +378,4 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
tf.test.main()
|
||||
|
|
|
@ -21,12 +21,12 @@ from tensorflow.python.keras.models import Model
|
|||
from tensorflow.python.keras import optimizers
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton.optimizer import Private
|
||||
from privacy.bolton.optimizer import Bolton
|
||||
|
||||
_accepted_distributions = ['laplace']
|
||||
|
||||
|
||||
class Bolton(Model):
|
||||
class BoltonModel(Model):
|
||||
"""
|
||||
Bolton episilon-delta model
|
||||
Uses 4 key steps to achieve privacy guarantees:
|
||||
|
@ -42,8 +42,7 @@ class Bolton(Model):
|
|||
|
||||
def __init__(self,
|
||||
n_classes,
|
||||
epsilon,
|
||||
noise_distribution='laplace',
|
||||
# noise_distribution='laplace',
|
||||
seed=1,
|
||||
dtype=tf.float32
|
||||
):
|
||||
|
@ -58,47 +57,22 @@ class Bolton(Model):
|
|||
dtype: data type to use for tensors
|
||||
"""
|
||||
|
||||
class MyCustomCallback(tf.keras.callbacks.Callback):
|
||||
"""Custom callback for bolton training requirements.
|
||||
Implements steps (see Bolton class):
|
||||
2. Projects weights to R after each batch
|
||||
3. Limits learning rate
|
||||
"""
|
||||
|
||||
def on_train_batch_end(self, batch, logs=None):
|
||||
loss = self.model.loss
|
||||
self.model.optimizer.limit_learning_rate(
|
||||
self.model.run_eagerly,
|
||||
loss.beta(self.model.class_weight),
|
||||
loss.gamma()
|
||||
)
|
||||
self.model._project_weights_to_r(loss.radius(), False)
|
||||
|
||||
def on_train_end(self, logs=None):
|
||||
loss = self.model.loss
|
||||
self.model._project_weights_to_r(loss.radius(), True)
|
||||
|
||||
if epsilon <= 0:
|
||||
raise ValueError('Detected epsilon: {0}. '
|
||||
'Valid range is 0 < epsilon <inf'.format(epsilon))
|
||||
|
||||
if noise_distribution not in _accepted_distributions:
|
||||
raise ValueError('Detected noise distribution: {0} not one of: {1} valid'
|
||||
'distributions'.format(noise_distribution,
|
||||
_accepted_distributions))
|
||||
|
||||
super(Bolton, self).__init__(name='bolton', dynamic=False)
|
||||
# if noise_distribution not in _accepted_distributions:
|
||||
# raise ValueError('Detected noise distribution: {0} not one of: {1} valid'
|
||||
# 'distributions'.format(noise_distribution,
|
||||
# _accepted_distributions))
|
||||
# if epsilon <= 0:
|
||||
# raise ValueError('Detected epsilon: {0}. '
|
||||
# 'Valid range is 0 < epsilon <inf'.format(epsilon))
|
||||
# self.epsilon = epsilon
|
||||
super(BoltonModel, self).__init__(name='bolton', dynamic=False)
|
||||
self.n_classes = n_classes
|
||||
# if we do regularization here, we require the user to re-instantiate
|
||||
# the model each time they want to
|
||||
# change lambda, unless we standardize modifying it later at .compile
|
||||
self.force = False
|
||||
self.noise_distribution = noise_distribution
|
||||
self.epsilon = epsilon
|
||||
# self.noise_distribution = noise_distribution
|
||||
self.seed = seed
|
||||
self.__in_fit = False
|
||||
self._layers_instantiated = False
|
||||
self._callback = MyCustomCallback()
|
||||
# self._callback = MyCustomCallback()
|
||||
self._dtype = dtype
|
||||
|
||||
def call(self, inputs):
|
||||
|
@ -139,55 +113,65 @@ class Bolton(Model):
|
|||
kernel_regularizer=loss.kernel_regularizer(),
|
||||
kernel_initializer=kernel_intiializer(),
|
||||
)
|
||||
# if we don't do regularization here, we require the user to
|
||||
# re-instantiate the model each time they want to change the penalty
|
||||
# weighting
|
||||
self._layers_instantiated = True
|
||||
self.output_layer.kernel_regularizer.l2 = loss.reg_lambda
|
||||
if not isinstance(optimizer, Private):
|
||||
if not isinstance(optimizer, Bolton):
|
||||
optimizer = optimizers.get(optimizer)
|
||||
optimizer = Private(optimizer)
|
||||
optimizer = Bolton(optimizer, loss)
|
||||
|
||||
super(Bolton, self).compile(optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
distribute=distribute,
|
||||
**kwargs
|
||||
)
|
||||
super(BoltonModel, self).compile(optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
distribute=distribute,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _post_fit(self, x, n_samples):
|
||||
"""Implements 1-time weight changes needed for Bolton method.
|
||||
In this case, specifically implements the noise addition
|
||||
assuming a strongly convex function.
|
||||
|
||||
Args:
|
||||
x: inputs
|
||||
n_samples: number of samples in the inputs. In case the number
|
||||
cannot be readily determined by inspecting x.
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
data_size = None
|
||||
if n_samples is not None:
|
||||
data_size = n_samples
|
||||
elif hasattr(x, 'shape'):
|
||||
data_size = x.shape[0]
|
||||
elif hasattr(x, "__len__"):
|
||||
data_size = len(x)
|
||||
elif data_size is None:
|
||||
if n_samples is None:
|
||||
raise ValueError("Unable to detect the number of training "
|
||||
"samples and n_smaples was None. "
|
||||
"either pass a dataset with a .shape or "
|
||||
"__len__ attribute or explicitly pass the "
|
||||
"number of samples as n_smaples.")
|
||||
for layer in self._layers:
|
||||
layer.kernel = layer.kernel + self._get_noise(
|
||||
self.noise_distribution,
|
||||
data_size
|
||||
)
|
||||
# def _post_fit(self, x, n_samples):
|
||||
# """Implements 1-time weight changes needed for Bolton method.
|
||||
# In this case, specifically implements the noise addition
|
||||
# assuming a strongly convex function.
|
||||
#
|
||||
# Args:
|
||||
# x: inputs
|
||||
# n_samples: number of samples in the inputs. In case the number
|
||||
# cannot be readily determined by inspecting x.
|
||||
#
|
||||
# Returns:
|
||||
#
|
||||
# """
|
||||
# data_size = None
|
||||
# if n_samples is not None:
|
||||
# data_size = n_samples
|
||||
# elif hasattr(x, 'shape'):
|
||||
# data_size = x.shape[0]
|
||||
# elif hasattr(x, "__len__"):
|
||||
# data_size = len(x)
|
||||
# elif data_size is None:
|
||||
# if n_samples is None:
|
||||
# raise ValueError("Unable to detect the number of training "
|
||||
# "samples and n_smaples was None. "
|
||||
# "either pass a dataset with a .shape or "
|
||||
# "__len__ attribute or explicitly pass the "
|
||||
# "number of samples as n_smaples.")
|
||||
# for layer in self.layers:
|
||||
# # layer.kernel = layer.kernel + self._get_noise(
|
||||
# # data_size
|
||||
# # )
|
||||
# input_dim = layer.kernel.numpy().shape[0]
|
||||
# layer.kernel = layer.kernel + self.optimizer.get_noise(
|
||||
# self.loss,
|
||||
# data_size,
|
||||
# input_dim,
|
||||
# self.n_classes,
|
||||
# self.class_weight
|
||||
# )
|
||||
|
||||
def fit(self,
|
||||
x=None,
|
||||
|
@ -209,6 +193,8 @@ class Bolton(Model):
|
|||
workers=1,
|
||||
use_multiprocessing=False,
|
||||
n_samples=None,
|
||||
epsilon=2,
|
||||
noise_distribution='laplace',
|
||||
**kwargs):
|
||||
"""Reroutes to super fit with additional Bolton delta-epsilon privacy
|
||||
requirements implemented. Note, inputs must be normalized s.t. ||x|| < 1
|
||||
|
@ -226,35 +212,40 @@ class Bolton(Model):
|
|||
|
||||
"""
|
||||
self.__in_fit = True
|
||||
cb = [self._callback]
|
||||
if callbacks is not None:
|
||||
cb.extend(callbacks)
|
||||
callbacks = cb
|
||||
# cb = [self.optimizer.callbacks]
|
||||
# if callbacks is not None:
|
||||
# cb.extend(callbacks)
|
||||
# callbacks = cb
|
||||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
self.class_weight = class_weight
|
||||
out = super(Bolton, self).fit(x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
validation_split=validation_split,
|
||||
validation_data=validation_data,
|
||||
shuffle=shuffle,
|
||||
class_weight=class_weight,
|
||||
sample_weight=sample_weight,
|
||||
initial_epoch=initial_epoch,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
validation_steps=validation_steps,
|
||||
validation_freq=validation_freq,
|
||||
max_queue_size=max_queue_size,
|
||||
workers=workers,
|
||||
use_multiprocessing=use_multiprocessing,
|
||||
**kwargs
|
||||
)
|
||||
self._post_fit(x, n_samples)
|
||||
self.__in_fit = False
|
||||
# self.class_weight = class_weight
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight,
|
||||
n_samples,
|
||||
self.n_classes,
|
||||
) as optim:
|
||||
out = super(BoltonModel, self).fit(x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
validation_split=validation_split,
|
||||
validation_data=validation_data,
|
||||
shuffle=shuffle,
|
||||
class_weight=class_weight,
|
||||
sample_weight=sample_weight,
|
||||
initial_epoch=initial_epoch,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
validation_steps=validation_steps,
|
||||
validation_freq=validation_freq,
|
||||
max_queue_size=max_queue_size,
|
||||
workers=workers,
|
||||
use_multiprocessing=use_multiprocessing,
|
||||
**kwargs
|
||||
)
|
||||
return out
|
||||
|
||||
def fit_generator(self,
|
||||
|
@ -284,7 +275,7 @@ class Bolton(Model):
|
|||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
self.class_weight = class_weight
|
||||
out = super(Bolton, self).fit_generator(
|
||||
out = super(BoltonModel, self).fit_generator(
|
||||
generator,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
epochs=epochs,
|
||||
|
@ -366,66 +357,195 @@ class Bolton(Model):
|
|||
"1D array".format(class_weights.shape))
|
||||
if class_weights.shape[0] != num_classes:
|
||||
raise ValueError(
|
||||
"Detected array length: {0} instead of: {1}".format(
|
||||
class_weights.shape[0],
|
||||
num_classes
|
||||
)
|
||||
"Detected array length: {0} instead of: {1}".format(
|
||||
class_weights.shape[0],
|
||||
num_classes
|
||||
)
|
||||
)
|
||||
return class_weights
|
||||
|
||||
def _project_weights_to_r(self, r, force=False):
|
||||
"""helper method to normalize the weights to the R-ball.
|
||||
# def _project_weights_to_r(self, r, force=False):
|
||||
# """helper method to normalize the weights to the R-ball.
|
||||
#
|
||||
# Args:
|
||||
# r: radius of "R-Ball". Scalar to normalize to.
|
||||
# force: True to normalize regardless of previous weight values.
|
||||
# False to check if weights > R-ball and only normalize then.
|
||||
#
|
||||
# Returns:
|
||||
#
|
||||
# """
|
||||
# for layer in self.layers:
|
||||
# weight_norm = tf.norm(layer.kernel, axis=0)
|
||||
# if force:
|
||||
# layer.kernel = layer.kernel / (weight_norm / r)
|
||||
# elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self._dtype)) > 0:
|
||||
# layer.kernel = layer.kernel / (weight_norm / r)
|
||||
|
||||
Args:
|
||||
r: radius of "R-Ball". Scalar to normalize to.
|
||||
force: True to normalize regardless of previous weight values.
|
||||
False to check if weights > R-ball and only normalize then.
|
||||
# def _get_noise(self, distribution, data_size):
|
||||
# """Sample noise to be added to weights for privacy guarantee
|
||||
#
|
||||
# Args:
|
||||
# distribution: the distribution type to pull noise from
|
||||
# data_size: the number of samples
|
||||
#
|
||||
# Returns: noise in shape of layer's weights to be added to the weights.
|
||||
#
|
||||
# """
|
||||
# distribution = distribution.lower()
|
||||
# input_dim = self.layers[0].kernel.numpy().shape[0]
|
||||
# loss = self.loss
|
||||
# if distribution == _accepted_distributions[0]: # laplace
|
||||
# per_class_epsilon = self.epsilon / (self.n_classes)
|
||||
# l2_sensitivity = (2 *
|
||||
# loss.lipchitz_constant(self.class_weight)) / \
|
||||
# (loss.gamma() * data_size)
|
||||
# unit_vector = tf.random.normal(shape=(input_dim, self.n_classes),
|
||||
# mean=0,
|
||||
# seed=1,
|
||||
# stddev=1.0,
|
||||
# dtype=self._dtype)
|
||||
# unit_vector = unit_vector / tf.math.sqrt(
|
||||
# tf.reduce_sum(tf.math.square(unit_vector), axis=0)
|
||||
# )
|
||||
#
|
||||
# beta = l2_sensitivity / per_class_epsilon
|
||||
# alpha = input_dim # input_dim
|
||||
# gamma = tf.random.gamma([self.n_classes],
|
||||
# alpha,
|
||||
# beta=1 / beta,
|
||||
# seed=1,
|
||||
# dtype=self._dtype
|
||||
# )
|
||||
# return unit_vector * gamma
|
||||
# raise NotImplementedError('Noise distribution: {0} is not '
|
||||
# 'a valid distribution'.format(distribution))
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
for layer in self._layers:
|
||||
weight_norm = tf.norm(layer.kernel, axis=0)
|
||||
if force:
|
||||
layer.kernel = layer.kernel / (weight_norm / r)
|
||||
elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self._dtype)) > 0:
|
||||
layer.kernel = layer.kernel / (weight_norm / r)
|
||||
if __name__ == '__main__':
|
||||
import tensorflow as tf
|
||||
|
||||
def _get_noise(self, distribution, data_size):
|
||||
"""Sample noise to be added to weights for privacy guarantee
|
||||
import os
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
Args:
|
||||
distribution: the distribution type to pull noise from
|
||||
data_size: the number of samples
|
||||
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'
|
||||
|
||||
Returns: noise in shape of layer's weights to be added to the weights.
|
||||
path_to_zip = tf.keras.utils.get_file('facades.tar.gz',
|
||||
origin=_URL,
|
||||
extract=True)
|
||||
|
||||
"""
|
||||
distribution = distribution.lower()
|
||||
input_dim = self._layers[0].kernel.numpy().shape[0]
|
||||
loss = self.loss
|
||||
if distribution == _accepted_distributions[0]: # laplace
|
||||
per_class_epsilon = self.epsilon / (self.n_classes)
|
||||
l2_sensitivity = (2 *
|
||||
loss.lipchitz_constant(self.class_weight)) / \
|
||||
(loss.gamma() * data_size)
|
||||
unit_vector = tf.random.normal(shape=(input_dim, self.n_classes),
|
||||
mean=0,
|
||||
seed=1,
|
||||
stddev=1.0,
|
||||
dtype=self._dtype)
|
||||
unit_vector = unit_vector / tf.math.sqrt(
|
||||
tf.reduce_sum(tf.math.square(unit_vector), axis=0)
|
||||
)
|
||||
PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')
|
||||
BUFFER_SIZE = 400
|
||||
BATCH_SIZE = 1
|
||||
IMG_WIDTH = 256
|
||||
IMG_HEIGHT = 256
|
||||
|
||||
beta = l2_sensitivity / per_class_epsilon
|
||||
alpha = input_dim # input_dim
|
||||
gamma = tf.random.gamma([self.n_classes],
|
||||
alpha,
|
||||
beta=1 / beta,
|
||||
seed=1,
|
||||
dtype=self._dtype
|
||||
)
|
||||
return unit_vector * gamma
|
||||
raise NotImplementedError('Noise distribution: {0} is not '
|
||||
'a valid distribution'.format(distribution))
|
||||
|
||||
def load(image_file):
|
||||
image = tf.io.read_file(image_file)
|
||||
image = tf.image.decode_jpeg(image)
|
||||
|
||||
w = tf.shape(image)[1]
|
||||
|
||||
w = w // 2
|
||||
real_image = image[:, :w, :]
|
||||
input_image = image[:, w:, :]
|
||||
|
||||
input_image = tf.cast(input_image, tf.float32)
|
||||
real_image = tf.cast(real_image, tf.float32)
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
inp, re = load(PATH + 'train/100.jpg')
|
||||
# casting to int for matplotlib to show the image
|
||||
plt.figure()
|
||||
plt.imshow(inp / 255.0)
|
||||
plt.figure()
|
||||
plt.imshow(re / 255.0)
|
||||
|
||||
|
||||
def resize(input_image, real_image, height, width):
|
||||
input_image = tf.image.resize(input_image, [height, width],
|
||||
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
|
||||
real_image = tf.image.resize(real_image, [height, width],
|
||||
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
def random_crop(input_image, real_image):
|
||||
stacked_image = tf.stack([input_image, real_image], axis=0)
|
||||
cropped_image = tf.image.random_crop(
|
||||
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])
|
||||
|
||||
return cropped_image[0], cropped_image[1]
|
||||
|
||||
|
||||
def normalize(input_image, real_image):
|
||||
input_image = (input_image / 127.5) - 1
|
||||
real_image = (real_image / 127.5) - 1
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
@tf.function()
|
||||
def random_jitter(input_image, real_image):
|
||||
# resizing to 286 x 286 x 3
|
||||
input_image, real_image = resize(input_image, real_image, 286, 286)
|
||||
|
||||
# randomly cropping to 256 x 256 x 3
|
||||
input_image, real_image = random_crop(input_image, real_image)
|
||||
|
||||
if tf.random.uniform(()) > 0.5:
|
||||
# random mirroring
|
||||
input_image = tf.image.flip_left_right(input_image)
|
||||
real_image = tf.image.flip_left_right(real_image)
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
def load_image_train(image_file):
|
||||
input_image, real_image = load(image_file)
|
||||
input_image, real_image = random_jitter(input_image, real_image)
|
||||
input_image, real_image = normalize(input_image, real_image)
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
def load_image_test(image_file):
|
||||
input_image, real_image = load(image_file)
|
||||
input_image, real_image = resize(input_image, real_image,
|
||||
IMG_HEIGHT, IMG_WIDTH)
|
||||
input_image, real_image = normalize(input_image, real_image)
|
||||
|
||||
return input_image, real_image
|
||||
|
||||
|
||||
train_dataset = tf.data.Dataset.list_files(PATH + 'train/*.jpg')
|
||||
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
|
||||
train_dataset = train_dataset.map(load_image_train,
|
||||
num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
train_dataset = train_dataset.batch(1)
|
||||
# steps_per_epoch = training_utils.infer_steps_for_dataset(
|
||||
# train_dataset, None, epochs=1, steps_name='steps')
|
||||
|
||||
# for batch in train_dataset:
|
||||
# print(batch[1].shape)
|
||||
test_dataset = tf.data.Dataset.list_files(PATH + 'test/*.jpg')
|
||||
# shuffling so that for every epoch a different image is generated
|
||||
# to predict and display the progress of our model.
|
||||
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
|
||||
test_dataset = test_dataset.map(load_image_test)
|
||||
test_dataset = test_dataset.batch(1)
|
||||
|
||||
be = BoltonModel(3, 2)
|
||||
from tensorflow.python.keras.optimizer_v2 import adam
|
||||
from privacy.bolton import loss
|
||||
|
||||
test = adam.Adam()
|
||||
l = loss.StrongConvexBinaryCrossentropy(1, 2, 1)
|
||||
be.compile(test, l)
|
||||
print("Eager exeuction: {0}".format(tf.executing_eagerly()))
|
||||
be.fit(train_dataset, verbose=0, steps_per_epoch=1, n_samples=1)
|
||||
|
|
|
@ -32,7 +32,7 @@ from absl.testing import absltest
|
|||
from tensorflow.python.keras.regularizers import L1L2
|
||||
|
||||
|
||||
class TestLoss(losses.Loss):
|
||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||
"""Test loss function for testing Bolton model"""
|
||||
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
||||
super(TestLoss, self).__init__(name=name)
|
||||
|
@ -145,21 +145,25 @@ class InitTests(keras_parameterized.TestCase):
|
|||
self.assertIsInstance(clf, model.Bolton)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid noise',
|
||||
'n_classes': 1,
|
||||
'epsilon': 1,
|
||||
'noise_distribution': 'not_valid',
|
||||
'weights_initializer': tf.initializers.GlorotUniform(),
|
||||
},
|
||||
{'testcase_name': 'invalid epsilon',
|
||||
'n_classes': 1,
|
||||
'epsilon': -1,
|
||||
'noise_distribution': 'laplace',
|
||||
'weights_initializer': tf.initializers.GlorotUniform(),
|
||||
},
|
||||
{'testcase_name': 'invalid noise',
|
||||
'n_classes': 1,
|
||||
'epsilon': 1,
|
||||
'noise_distribution': 'not_valid',
|
||||
'weights_initializer': tf.initializers.GlorotUniform(),
|
||||
},
|
||||
{'testcase_name': 'invalid epsilon',
|
||||
'n_classes': 1,
|
||||
'epsilon': -1,
|
||||
'noise_distribution': 'laplace',
|
||||
'weights_initializer': tf.initializers.GlorotUniform(),
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(
|
||||
self, n_classes, epsilon, noise_distribution, weights_initializer):
|
||||
self,
|
||||
n_classes,
|
||||
epsilon,
|
||||
noise_distribution,
|
||||
weights_initializer):
|
||||
# test invalid domains for each variable, especially noise
|
||||
seed = 1
|
||||
with self.assertRaises(ValueError):
|
||||
|
@ -204,16 +208,16 @@ class InitTests(keras_parameterized.TestCase):
|
|||
self.assertEqual(clf.loss, loss)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'Not strong loss',
|
||||
'n_classes': 1,
|
||||
'loss': losses.BinaryCrossentropy(),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'Not valid optimizer',
|
||||
'n_classes': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'ada',
|
||||
}
|
||||
{'testcase_name': 'Not strong loss',
|
||||
'n_classes': 1,
|
||||
'loss': losses.BinaryCrossentropy(),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'Not valid optimizer',
|
||||
'n_classes': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'ada',
|
||||
}
|
||||
])
|
||||
def test_bad_compile(self, n_classes, loss, optimizer):
|
||||
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
||||
|
@ -250,7 +254,7 @@ def _cat_dataset(n_samples, input_dim, n_classes, t='train', generator=False):
|
|||
y_stack = []
|
||||
for i_class in range(n_classes):
|
||||
x_stack.append(
|
||||
tf.constant(1*i_class, tf.float32, (n_samples, input_dim))
|
||||
tf.constant(1*i_class, tf.float32, (n_samples, input_dim))
|
||||
)
|
||||
y_stack.append(
|
||||
tf.constant(i_class, tf.float32, (n_samples, n_classes))
|
||||
|
@ -258,7 +262,7 @@ def _cat_dataset(n_samples, input_dim, n_classes, t='train', generator=False):
|
|||
x_set, y_set = tf.stack(x_stack), tf.stack(y_stack)
|
||||
if generator:
|
||||
dataset = tf.data.Dataset.from_tensor_slices(
|
||||
(x_set, y_set)
|
||||
(x_set, y_set)
|
||||
)
|
||||
return dataset
|
||||
return x_set, y_set
|
||||
|
@ -281,10 +285,10 @@ def _do_fit(n_samples,
|
|||
clf.compile(optimizer, loss)
|
||||
if generator:
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
generator=generator
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
generator=generator
|
||||
)
|
||||
y = None
|
||||
# x = x.batch(batch_size)
|
||||
|
@ -315,26 +319,26 @@ class FitTests(keras_parameterized.TestCase):
|
|||
|
||||
# @test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator fit',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'iterator fit no samples',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'with callbacks',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
'callbacks': TestCallback()
|
||||
},
|
||||
{'testcase_name': 'iterator fit',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'iterator fit no samples',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
'callbacks': None
|
||||
},
|
||||
{'testcase_name': 'with callbacks',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
'callbacks': TestCallback()
|
||||
},
|
||||
])
|
||||
def test_fit(self, generator, reset_n_samples, callbacks):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
|
@ -344,9 +348,19 @@ class FitTests(keras_parameterized.TestCase):
|
|||
epsilon = 1
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
clf = _do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size,
|
||||
reset_n_samples, optimizer, loss, callbacks)
|
||||
self.assertEqual(hasattr(clf, '_layers'), True)
|
||||
clf = _do_fit(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
callbacks
|
||||
)
|
||||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'generator fit',
|
||||
|
@ -368,15 +382,15 @@ class FitTests(keras_parameterized.TestCase):
|
|||
)
|
||||
clf.compile(optimizer, loss)
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
generator=generator
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
generator=generator
|
||||
)
|
||||
x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples // 2)
|
||||
clf.fit_generator(x, n_samples=n_samples)
|
||||
self.assertEqual(hasattr(clf, '_layers'), True)
|
||||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator no n_samples',
|
||||
|
@ -399,32 +413,43 @@ class FitTests(keras_parameterized.TestCase):
|
|||
epsilon = 1
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
_do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size,
|
||||
reset_n_samples, optimizer, loss, None, distribution)
|
||||
_do_fit(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
None,
|
||||
distribution
|
||||
)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'None class_weights',
|
||||
'class_weights': None,
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'result': 1},
|
||||
{'testcase_name': 'class weights array',
|
||||
'class_weights': [1, 1],
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{'testcase_name': 'class weights balanced',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{'testcase_name': 'None class_weights',
|
||||
'class_weights': None,
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'result': 1},
|
||||
{'testcase_name': 'class weights array',
|
||||
'class_weights': [1, 1],
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{'testcase_name': 'class weights balanced',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
])
|
||||
def test_class_calculate(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
result
|
||||
):
|
||||
):
|
||||
clf = model.Bolton(1, 1)
|
||||
expected = clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
|
@ -447,14 +472,14 @@ class FitTests(keras_parameterized.TestCase):
|
|||
'class_weights': 'balanced',
|
||||
'class_counts': None,
|
||||
'num_classes': 1,
|
||||
'err_msg':
|
||||
"Class counts must be provided if using class_weights=balanced"},
|
||||
'err_msg': "Class counts must be provided if "
|
||||
"using class_weights=balanced"},
|
||||
{'testcase_name': 'no num classes',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1],
|
||||
'num_classes': None,
|
||||
'err_msg':
|
||||
'num_classes must be provided if using class_weights=balanced'},
|
||||
'err_msg': 'num_classes must be provided if '
|
||||
'using class_weights=balanced'},
|
||||
{'testcase_name': 'class counts not array',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': 1,
|
||||
|
@ -464,7 +489,7 @@ class FitTests(keras_parameterized.TestCase):
|
|||
'class_weights': [1],
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'err_msg': "You must pass a value for num_classes if"
|
||||
'err_msg': "You must pass a value for num_classes if "
|
||||
"creating an array of class_weights"},
|
||||
{'testcase_name': 'class counts array, improper shape',
|
||||
'class_weights': [[1], [1]],
|
||||
|
@ -481,7 +506,8 @@ class FitTests(keras_parameterized.TestCase):
|
|||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
err_msg):
|
||||
err_msg
|
||||
):
|
||||
clf = model.Bolton(1, 1)
|
||||
with self.assertRaisesRegexp(ValueError, err_msg):
|
||||
expected = clf.calculate_class_weights(class_weights,
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Private Optimizer for bolton method"""
|
||||
"""Bolton Optimizer for bolton method"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -19,15 +19,16 @@ from __future__ import print_function
|
|||
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
|
||||
_private_attributes = ['_internal_optimizer', 'dtype']
|
||||
_accepted_distributions = ['laplace']
|
||||
|
||||
|
||||
class Private(optimizer_v2.OptimizerV2):
|
||||
class Bolton(optimizer_v2.OptimizerV2):
|
||||
"""
|
||||
Private optimizer wraps another tf optimizer to be used
|
||||
Bolton optimizer wraps another tf optimizer to be used
|
||||
as the visible optimizer to the tf model. No matter the optimizer
|
||||
passed, "Private" enables the bolton model to control the learning rate
|
||||
passed, "Bolton" enables the bolton model to control the learning rate
|
||||
based on the strongly convex loss.
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
|
@ -36,7 +37,8 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
"""
|
||||
def __init__(self,
|
||||
optimizer: optimizer_v2.OptimizerV2,
|
||||
dtype=tf.float32
|
||||
loss: StrongConvexMixin,
|
||||
dtype=tf.float32,
|
||||
):
|
||||
"""Constructor.
|
||||
|
||||
|
@ -44,15 +46,100 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
optimizer: Optimizer_v2 or subclass to be used as the optimizer
|
||||
(wrapped).
|
||||
"""
|
||||
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError("loss function must be a Strongly Convex and therfore"
|
||||
"extend the StrongConvexMixin.")
|
||||
self._private_attributes = ['_internal_optimizer',
|
||||
'dtype',
|
||||
'noise_distribution',
|
||||
'epsilon',
|
||||
'loss',
|
||||
'class_weights',
|
||||
'input_dim',
|
||||
'n_samples',
|
||||
'n_classes',
|
||||
'layers',
|
||||
'_model'
|
||||
]
|
||||
self._internal_optimizer = optimizer
|
||||
self.dtype = dtype
|
||||
self.loss = loss
|
||||
|
||||
def get_config(self):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
return self._internal_optimizer.get_config()
|
||||
|
||||
def limit_learning_rate(self, is_eager, beta, gamma):
|
||||
def project_weights_to_r(self, force=False):
|
||||
"""helper method to normalize the weights to the R-ball.
|
||||
|
||||
Args:
|
||||
r: radius of "R-Ball". Scalar to normalize to.
|
||||
force: True to normalize regardless of previous weight values.
|
||||
False to check if weights > R-ball and only normalize then.
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
r = self.loss.radius()
|
||||
for layer in self.layers:
|
||||
if tf.executing_eagerly():
|
||||
weight_norm = tf.norm(layer.kernel, axis=0)
|
||||
if force:
|
||||
layer.kernel = layer.kernel / (weight_norm / r)
|
||||
elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self.dtype)) > 0:
|
||||
layer.kernel = layer.kernel / (weight_norm / r)
|
||||
else:
|
||||
weight_norm = tf.norm(layer.kernel, axis=0)
|
||||
if force:
|
||||
layer.kernel = layer.kernel / (weight_norm / r)
|
||||
else:
|
||||
layer.kernel = tf.cond(
|
||||
tf.reduce_sum(tf.cast(weight_norm > r, dtype=self.dtype)) > 0,
|
||||
lambda: layer.kernel / (weight_norm / r),
|
||||
lambda: layer.kernel
|
||||
)
|
||||
|
||||
def get_noise(self, data_size, input_dim, output_dim, class_weight):
|
||||
"""Sample noise to be added to weights for privacy guarantee
|
||||
|
||||
Args:
|
||||
distribution: the distribution type to pull noise from
|
||||
data_size: the number of samples
|
||||
|
||||
Returns: noise in shape of layer's weights to be added to the weights.
|
||||
|
||||
"""
|
||||
loss = self.loss
|
||||
distribution = self.noise_distribution.lower()
|
||||
if distribution == _accepted_distributions[0]: # laplace
|
||||
per_class_epsilon = self.epsilon / (output_dim)
|
||||
l2_sensitivity = (2 *
|
||||
loss.lipchitz_constant(class_weight)) / \
|
||||
(loss.gamma() * data_size)
|
||||
unit_vector = tf.random.normal(shape=(input_dim, output_dim),
|
||||
mean=0,
|
||||
seed=1,
|
||||
stddev=1.0,
|
||||
dtype=self.dtype)
|
||||
unit_vector = unit_vector / tf.math.sqrt(
|
||||
tf.reduce_sum(tf.math.square(unit_vector), axis=0)
|
||||
)
|
||||
|
||||
beta = l2_sensitivity / per_class_epsilon
|
||||
alpha = input_dim # input_dim
|
||||
gamma = tf.random.gamma([output_dim],
|
||||
alpha,
|
||||
beta=1 / beta,
|
||||
seed=1,
|
||||
dtype=self.dtype
|
||||
)
|
||||
return unit_vector * gamma
|
||||
raise NotImplementedError('Noise distribution: {0} is not '
|
||||
'a valid distribution'.format(distribution))
|
||||
|
||||
def limit_learning_rate(self, beta, gamma):
|
||||
"""Implements learning rate limitation that is required by the bolton
|
||||
method for sensitivity bounding of the strongly convex function.
|
||||
Sets the learning rate to the min(1/beta, 1/(gamma*t))
|
||||
|
@ -65,20 +152,13 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
Returns: None
|
||||
|
||||
"""
|
||||
numerator = tf.Variable(initial_value=1, dtype=self.dtype)
|
||||
numerator = tf.constant(1, dtype=self.dtype)
|
||||
t = tf.cast(self._iterations, self.dtype)
|
||||
# will exist on the internal optimizer
|
||||
pred = numerator / beta < numerator / (gamma * t)
|
||||
if is_eager: # check eagerly
|
||||
if pred:
|
||||
self.learning_rate = numerator / beta
|
||||
else:
|
||||
self.learning_rate = numerator / (gamma * t)
|
||||
if numerator / beta < numerator / (gamma * t):
|
||||
self.learning_rate = numerator / beta
|
||||
else:
|
||||
if pred:
|
||||
self.learning_rate = numerator / beta
|
||||
else:
|
||||
self.learning_rate = numerator / (gamma * t)
|
||||
self.learning_rate = numerator / (gamma * t)
|
||||
|
||||
def from_config(self, *args, **kwargs):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
|
@ -92,14 +172,25 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
Args:
|
||||
name:
|
||||
|
||||
Returns: attribute from Private if specified to come from self, else
|
||||
Returns: attribute from Bolton if specified to come from self, else
|
||||
from _internal_optimizer.
|
||||
|
||||
"""
|
||||
if name in _private_attributes:
|
||||
if name == '_private_attributes':
|
||||
return getattr(self, name)
|
||||
elif name in self._private_attributes:
|
||||
return getattr(self, name)
|
||||
optim = object.__getattribute__(self, '_internal_optimizer')
|
||||
return object.__getattribute__(optim, name)
|
||||
try:
|
||||
return object.__getattribute__(optim, name)
|
||||
except AttributeError:
|
||||
raise AttributeError("Neither '{0}' nor '{1}' object has attribute '{2}'"
|
||||
"".format(
|
||||
self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__,
|
||||
name
|
||||
)
|
||||
)
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
""" Set attribute to self instance if its the internal optimizer.
|
||||
|
@ -112,7 +203,9 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
Returns:
|
||||
|
||||
"""
|
||||
if key in _private_attributes:
|
||||
if key == '_private_attributes':
|
||||
object.__setattr__(self, key, value)
|
||||
elif key in key in self._private_attributes:
|
||||
object.__setattr__(self, key, value)
|
||||
else:
|
||||
setattr(self._internal_optimizer, key, value)
|
||||
|
@ -130,24 +223,135 @@ class Private(optimizer_v2.OptimizerV2):
|
|||
def get_updates(self, loss, params):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
return self._internal_optimizer.get_updates(loss, params)
|
||||
# self.layers = params
|
||||
out = self._internal_optimizer.get_updates(loss, params)
|
||||
self.limit_learning_rate(self.loss.beta(self.class_weights),
|
||||
self.loss.gamma()
|
||||
)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def apply_gradients(self, *args, **kwargs):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
return self._internal_optimizer.apply_gradients(*args, **kwargs)
|
||||
# grads_and_vars = kwargs.get('grads_and_vars', None)
|
||||
# grads_and_vars = optimizer_v2._filter_grads(grads_and_vars)
|
||||
# var_list = [v for (_, v) in grads_and_vars]
|
||||
# self.layers = var_list
|
||||
out = self._internal_optimizer.apply_gradients(*args, **kwargs)
|
||||
self.limit_learning_rate(self.loss.beta(self.class_weights),
|
||||
self.loss.gamma()
|
||||
)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def minimize(self, *args, **kwargs):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
return self._internal_optimizer.minimize(*args, **kwargs)
|
||||
# self.layers = kwargs.get('var_list', None)
|
||||
out = self._internal_optimizer.minimize(*args, **kwargs)
|
||||
self.limit_learning_rate(self.loss.beta(self.class_weights),
|
||||
self.loss.gamma()
|
||||
)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def _compute_gradients(self, *args, **kwargs):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
# self.layers = kwargs.get('var_list', None)
|
||||
return self._internal_optimizer._compute_gradients(*args, **kwargs)
|
||||
|
||||
def get_gradients(self, *args, **kwargs):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer.
|
||||
"""
|
||||
# self.layers = kwargs.get('params', None)
|
||||
return self._internal_optimizer.get_gradients(*args, **kwargs)
|
||||
|
||||
def __enter__(self):
|
||||
noise_distribution = self.noise_distribution
|
||||
epsilon = self.epsilon
|
||||
class_weights = self.class_weights
|
||||
n_samples = self.n_samples
|
||||
if noise_distribution not in _accepted_distributions:
|
||||
raise ValueError('Detected noise distribution: {0} not one of: {1} valid'
|
||||
'distributions'.format(noise_distribution,
|
||||
_accepted_distributions))
|
||||
self.noise_distribution = noise_distribution
|
||||
self.epsilon = epsilon
|
||||
self.class_weights = class_weights
|
||||
self.n_samples = n_samples
|
||||
return self
|
||||
|
||||
def __call__(self,
|
||||
noise_distribution,
|
||||
epsilon,
|
||||
layers,
|
||||
class_weights,
|
||||
n_samples,
|
||||
n_classes,
|
||||
):
|
||||
"""
|
||||
|
||||
Args:
|
||||
noise_distribution: the noise distribution to pick.
|
||||
see _accepted_distributions and get_noise for
|
||||
possible values.
|
||||
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
||||
class_weights: class_weights used
|
||||
n_samples number of rows/individual samples in the training set
|
||||
n_classes: number of output classes
|
||||
layers: list of Keras/Tensorflow layers.
|
||||
"""
|
||||
if epsilon <= 0:
|
||||
raise ValueError('Detected epsilon: {0}. '
|
||||
'Valid range is 0 < epsilon <inf'.format(epsilon))
|
||||
self.noise_distribution = noise_distribution
|
||||
self.epsilon = epsilon
|
||||
self.class_weights = class_weights
|
||||
self.n_samples = n_samples
|
||||
self.n_classes = n_classes
|
||||
self.layers = layers
|
||||
return self
|
||||
|
||||
def __exit__(self, *args):
|
||||
"""Exit call from with statement.
|
||||
used to
|
||||
|
||||
1.reset the model and fit parameters passed to the optimizer
|
||||
to enable the Bolton Privacy guarantees. These are reset to ensure
|
||||
that any future calls to fit with the same instance of the optimizer
|
||||
will properly error out.
|
||||
|
||||
2.call post-fit methods normalizing/projecting the model weights and
|
||||
adding noise to the weights.
|
||||
|
||||
|
||||
"""
|
||||
# for param in self.layers:
|
||||
# if param.name.find('kernel') != -1 or param.name.find('weight') != -1:
|
||||
# input_dim = param.numpy().shape[0]
|
||||
# print(param)
|
||||
# noise = -1 * self.get_noise(self.n_samples,
|
||||
# input_dim,
|
||||
# self.n_classes,
|
||||
# self.class_weights
|
||||
# )
|
||||
# print(tf.math.subtract(param, noise))
|
||||
# param.assign(tf.math.subtract(param, noise))
|
||||
self.project_weights_to_r(True)
|
||||
for layer in self.layers:
|
||||
input_dim, output_dim = layer.kernel.shape
|
||||
noise = self.get_noise(self.n_samples,
|
||||
input_dim,
|
||||
output_dim,
|
||||
self.class_weights
|
||||
)
|
||||
layer.kernel = tf.math.add(layer.kernel, noise)
|
||||
self.noise_distribution = None
|
||||
self.epsilon = -1
|
||||
self.class_weights = None
|
||||
self.n_samples = None
|
||||
self.input_dim = None
|
||||
self.n_classes = None
|
||||
self.layers = None
|
||||
|
|
|
@ -21,19 +21,129 @@ import tensorflow as tf
|
|||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from privacy.bolton import model
|
||||
from privacy.bolton import optimizer as opt
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow.python.keras import losses
|
||||
from tensorflow.python.keras.models import Model
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.framework import test_util
|
||||
|
||||
from absl.testing import parameterized
|
||||
from absl.testing import absltest
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton import optimizer as opt
|
||||
|
||||
|
||||
class TestModel(Model):
|
||||
"""
|
||||
Bolton episilon-delta model
|
||||
Uses 4 key steps to achieve privacy guarantees:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
2. Projects weights to R after each batch
|
||||
3. Limits learning rate
|
||||
4. Use a strongly convex loss function (see compile)
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def __init__(self, n_classes=2):
|
||||
"""
|
||||
Args:
|
||||
n_classes: number of output classes to predict.
|
||||
epsilon: level of privacy guarantee
|
||||
noise_distribution: distribution to pull weight perturbations from
|
||||
weights_initializer: initializer for weights
|
||||
seed: random seed to use
|
||||
dtype: data type to use for tensors
|
||||
"""
|
||||
super(TestModel, self).__init__(name='bolton', dynamic=False)
|
||||
self.n_classes = n_classes
|
||||
self.layer_input_shape = (16, 1)
|
||||
self.output_layer = tf.keras.layers.Dense(
|
||||
self.n_classes,
|
||||
input_shape=self.layer_input_shape,
|
||||
kernel_regularizer=L1L2(l2=1),
|
||||
kernel_initializer='glorot_uniform',
|
||||
)
|
||||
|
||||
|
||||
# def call(self, inputs):
|
||||
# """Forward pass of network
|
||||
#
|
||||
# Args:
|
||||
# inputs: inputs to neural network
|
||||
#
|
||||
# Returns:
|
||||
#
|
||||
# """
|
||||
# return self.output_layer(inputs)
|
||||
|
||||
|
||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||
"""Test loss function for testing Bolton model"""
|
||||
def __init__(self, reg_lambda, C, radius_constant, name='test'):
|
||||
super(TestLoss, self).__init__(name=name)
|
||||
self.reg_lambda = reg_lambda
|
||||
self.C = C
|
||||
self.radius_constant = radius_constant
|
||||
|
||||
def radius(self):
|
||||
"""Radius of R-Ball (value to normalize weights to after each batch)
|
||||
|
||||
Returns: radius
|
||||
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def gamma(self):
|
||||
""" Gamma strongly convex
|
||||
|
||||
Returns: gamma
|
||||
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def beta(self, class_weight):
|
||||
"""Beta smoothess
|
||||
|
||||
Args:
|
||||
class_weight: the class weights used.
|
||||
|
||||
Returns: Beta
|
||||
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def lipchitz_constant(self, class_weight):
|
||||
""" L lipchitz continuous
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns: L
|
||||
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def call(self, val0, val1):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(tf.math.squared_difference(val0, val1), axis=1)
|
||||
|
||||
def max_class_weight(self, class_weight):
|
||||
if class_weight is None:
|
||||
return 1
|
||||
|
||||
def kernel_regularizer(self):
|
||||
return L1L2(l2=self.reg_lambda)
|
||||
|
||||
|
||||
class TestOptimizer(OptimizerV2):
|
||||
"""Optimizer used for testing the Private optimizer"""
|
||||
"""Optimizer used for testing the Bolton optimizer"""
|
||||
def __init__(self):
|
||||
super(TestOptimizer, self).__init__('test')
|
||||
self.not_private = 'test'
|
||||
self.iterations = tf.Variable(1, dtype=tf.float32)
|
||||
self._iterations = tf.Variable(1, dtype=tf.float32)
|
||||
self.iterations = tf.constant(1, dtype=tf.float32)
|
||||
self._iterations = tf.constant(1, dtype=tf.float32)
|
||||
|
||||
def _compute_gradients(self, loss, var_list, grad_loss=None):
|
||||
return 'test'
|
||||
|
@ -41,7 +151,7 @@ class TestOptimizer(OptimizerV2):
|
|||
def get_config(self):
|
||||
return 'test'
|
||||
|
||||
def from_config(cls, config, custom_objects=None):
|
||||
def from_config(self, config, custom_objects=None):
|
||||
return 'test'
|
||||
|
||||
def _create_slots(self):
|
||||
|
@ -65,34 +175,22 @@ class TestOptimizer(OptimizerV2):
|
|||
def get_gradients(self, loss, params):
|
||||
return 'test'
|
||||
|
||||
class PrivateTest(keras_parameterized.TestCase):
|
||||
"""Private Optimizer tests"""
|
||||
def limit_learning_rate(self):
|
||||
return 'test'
|
||||
|
||||
class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||
"""Bolton Optimizer tests"""
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'branch True, beta',
|
||||
{'testcase_name': 'branch beta',
|
||||
'fn': 'limit_learning_rate',
|
||||
'args': [True,
|
||||
tf.Variable(2, dtype=tf.float32),
|
||||
'args': [tf.Variable(2, dtype=tf.float32),
|
||||
tf.Variable(1, dtype=tf.float32)],
|
||||
'result': tf.Variable(0.5, dtype=tf.float32),
|
||||
'test_attr': 'learning_rate'},
|
||||
{'testcase_name': 'branch True, gamma',
|
||||
{'testcase_name': 'branch gamma',
|
||||
'fn': 'limit_learning_rate',
|
||||
'args': [True,
|
||||
tf.Variable(1, dtype=tf.float32),
|
||||
tf.Variable(1, dtype=tf.float32)],
|
||||
'result': tf.Variable(1, dtype=tf.float32),
|
||||
'test_attr': 'learning_rate'},
|
||||
{'testcase_name': 'branch False, beta',
|
||||
'fn': 'limit_learning_rate',
|
||||
'args': [False,
|
||||
tf.Variable(2, dtype=tf.float32),
|
||||
tf.Variable(1, dtype=tf.float32)],
|
||||
'result': tf.Variable(0.5, dtype=tf.float32),
|
||||
'test_attr': 'learning_rate'},
|
||||
{'testcase_name': 'branch False, gamma',
|
||||
'fn': 'limit_learning_rate',
|
||||
'args': [False,
|
||||
tf.Variable(1, dtype=tf.float32),
|
||||
'args': [tf.Variable(1, dtype=tf.float32),
|
||||
tf.Variable(1, dtype=tf.float32)],
|
||||
'result': tf.Variable(1, dtype=tf.float32),
|
||||
'test_attr': 'learning_rate'},
|
||||
|
@ -101,9 +199,26 @@ class PrivateTest(keras_parameterized.TestCase):
|
|||
'args': ['dtype'],
|
||||
'result': tf.float32,
|
||||
'test_attr': None},
|
||||
{'testcase_name': 'project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': ['dtype'],
|
||||
'result': tf.float32,
|
||||
'test_attr': None},
|
||||
])
|
||||
def test_fn(self, fn, args, result, test_attr):
|
||||
private = opt.Private(TestOptimizer())
|
||||
"""test that a fn of Bolton optimizer is working as expected.
|
||||
|
||||
Args:
|
||||
fn: method of Optimizer to test
|
||||
args: args to optimizer fn
|
||||
result: the expected result
|
||||
test_attr: None if the fn returns the test result. Otherwise, this is
|
||||
the attribute of Bolton to check against result with.
|
||||
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
loss = TestLoss(1, 1, 1)
|
||||
private = opt.Bolton(TestOptimizer(), loss)
|
||||
res = getattr(private, fn, None)(*args)
|
||||
if test_attr is not None:
|
||||
res = getattr(private, test_attr, None)
|
||||
|
@ -142,41 +257,88 @@ class PrivateTest(keras_parameterized.TestCase):
|
|||
'args': [1, 1]},
|
||||
])
|
||||
def test_rerouted_function(self, fn, args):
|
||||
""" tests that a method of the internal optimizer is correctly routed from
|
||||
the Bolton instance to the internal optimizer instance (TestOptimizer,
|
||||
here).
|
||||
|
||||
Args:
|
||||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = TestOptimizer()
|
||||
optimizer = opt.Private(optimizer)
|
||||
self.assertEqual(
|
||||
getattr(optimizer, fn, lambda: 'fn not found')(*args),
|
||||
'test'
|
||||
)
|
||||
optimizer = opt.Bolton(optimizer, loss)
|
||||
model = TestModel(2)
|
||||
model.compile(optimizer, loss)
|
||||
model.layers[0].kernel_initializer(model.layer_input_shape)
|
||||
print(model.layers[0].__dict__)
|
||||
with optimizer('laplace', 2, model.layers, 1, 1, model.n_classes):
|
||||
self.assertEqual(
|
||||
getattr(optimizer, fn, lambda: 'fn not found')(*args),
|
||||
'test'
|
||||
)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: limit_learning_rate',
|
||||
'fn': 'limit_learning_rate',
|
||||
'args': [1, 1, 1]}
|
||||
'args': [1, 1, 1]},
|
||||
{'testcase_name': 'fn: project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': []},
|
||||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1, 1, 1]},
|
||||
])
|
||||
def test_not_reroute_fn(self, fn, args):
|
||||
"""Test that a fn that should not be rerouted to the internal optimizer is
|
||||
in face not rerouted.
|
||||
|
||||
Args:
|
||||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
optimizer = TestOptimizer()
|
||||
optimizer = opt.Private(optimizer)
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = opt.Bolton(optimizer, loss)
|
||||
self.assertNotEqual(getattr(optimizer, fn, lambda: 'test')(*args),
|
||||
'test')
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr: not_private',
|
||||
'attr': 'not_private'}
|
||||
{'testcase_name': 'attr: _iterations',
|
||||
'attr': '_iterations'}
|
||||
])
|
||||
def test_reroute_attr(self, attr):
|
||||
""" test that attribute of internal optimizer is correctly rerouted to
|
||||
the internal optimizer
|
||||
|
||||
Args:
|
||||
attr: attribute to test
|
||||
result: result after checking attribute
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
internal_optimizer = TestOptimizer()
|
||||
optimizer = opt.Private(internal_optimizer)
|
||||
self.assertEqual(optimizer._internal_optimizer, internal_optimizer)
|
||||
optimizer = opt.Bolton(internal_optimizer, loss)
|
||||
self.assertEqual(getattr(optimizer, attr),
|
||||
getattr(internal_optimizer, attr)
|
||||
)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr: _internal_optimizer',
|
||||
'attr': '_internal_optimizer'}
|
||||
{'testcase_name': 'attr does not exist',
|
||||
'attr': '_not_valid'}
|
||||
])
|
||||
def test_not_reroute_attr(self, attr):
|
||||
def test_attribute_error(self, attr):
|
||||
""" test that attribute of internal optimizer is correctly rerouted to
|
||||
the internal optimizer
|
||||
|
||||
Args:
|
||||
attr: attribute to test
|
||||
result: result after checking attribute
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
internal_optimizer = TestOptimizer()
|
||||
optimizer = opt.Private(internal_optimizer)
|
||||
self.assertEqual(optimizer._internal_optimizer, internal_optimizer)
|
||||
optimizer = opt.Bolton(internal_optimizer, loss)
|
||||
with self.assertRaises(AttributeError):
|
||||
getattr(optimizer, attr)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
test.main()
|
||||
|
|
Loading…
Reference in a new issue