From ed7fa73a99572e2529d0ac1057bfd7ca35407fae Mon Sep 17 00:00:00 2001 From: Christopher Choquette Choo Date: Mon, 17 Jun 2019 14:46:04 -0400 Subject: [PATCH] Update Huber loss regularization term and some small changes across loss parameters. --- privacy/bolton/loss.py | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/privacy/bolton/loss.py b/privacy/bolton/loss.py index de49607..4ed0479 100644 --- a/privacy/bolton/loss.py +++ b/privacy/bolton/loss.py @@ -58,7 +58,8 @@ class StrongConvexMixin: """Smoothness, beta Args: - class_weight: the class weights used. + class_weight: the class weights as scalar or 1d tensor, where its + dimensionality is equal to the number of outputs. Returns: Beta @@ -154,7 +155,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin): """Compute loss Args: - y_true: Ground truth values. One + y_true: Ground truth values. One hot encoded using -1 and 1. y_pred: The predicted values. Returns: @@ -211,7 +212,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin): this loss function to be strongly convex. :return: """ - return L1L2(l2=self.reg_lambda) + return L1L2(l2=self.reg_lambda/2) class StrongConvexBinaryCrossentropy( @@ -230,7 +231,6 @@ class StrongConvexBinaryCrossentropy( from_logits: bool = True, label_smoothing: float = 0, reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, - name: str = 'binarycrossentropy', dtype=tf.float32): """ Args: @@ -239,7 +239,9 @@ class StrongConvexBinaryCrossentropy( radius_constant: constant defining the length of the radius reduction: reduction type to use. See super class label_smoothing: amount of smoothing to perform on labels - relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x) + relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). + Note, the impact of this parameter's effect on privacy + is not known and thus the default should be used. name: Name of the loss instance dtype: tf datatype to use for tensor conversions. """ @@ -256,7 +258,7 @@ class StrongConvexBinaryCrossentropy( self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype) super(StrongConvexBinaryCrossentropy, self).__init__( reduction=reduction, - name=name, + name='binarycrossentropy', from_logits=from_logits, label_smoothing=label_smoothing, )