Bolton implementation and unit tests. Has two pre-implemented loss functions.
This commit is contained in:
parent
ed7fa73a99
commit
f41be2c598
8 changed files with 49 additions and 308 deletions
|
@ -41,3 +41,9 @@ else:
|
|||
from privacy.optimizers.dp_optimizer import DPAdamOptimizer
|
||||
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
|
||||
|
||||
from privacy.bolton.models import BoltonModel
|
||||
from privacy.bolton.optimizers import Bolton
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolton.losses import StrongConvexHuber
|
||||
|
|
|
@ -9,6 +9,7 @@ if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
|||
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
|
||||
pass
|
||||
else:
|
||||
from privacy.bolton.model import Bolton
|
||||
from privacy.bolton.loss import StrongConvexHuber
|
||||
from privacy.bolton.loss import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolton.models import BoltonModel
|
||||
from privacy.bolton.optimizers import Bolton
|
||||
from privacy.bolton.losses import StrongConvexHuber
|
||||
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
|
|
@ -21,6 +21,7 @@ from tensorflow.python.keras import losses
|
|||
from tensorflow.python.keras.utils import losses_utils
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
class StrongConvexMixin:
|
||||
|
@ -147,7 +148,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
self.dtype = dtype
|
||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
super(StrongConvexHuber, self).__init__(
|
||||
name='huber',
|
||||
name='strongconvexhuber',
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
|
@ -245,6 +246,11 @@ class StrongConvexBinaryCrossentropy(
|
|||
name: Name of the loss instance
|
||||
dtype: tf datatype to use for tensor conversions.
|
||||
"""
|
||||
if label_smoothing != 0:
|
||||
logging.warning('The impact of label smoothing on privacy is unknown. '
|
||||
'Use label smoothing at your own risk as it may not '
|
||||
'guarantee privacy.')
|
||||
|
||||
if reg_lambda <= 0:
|
||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
if C <= 0:
|
||||
|
@ -258,7 +264,7 @@ class StrongConvexBinaryCrossentropy(
|
|||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
super(StrongConvexBinaryCrossentropy, self).__init__(
|
||||
reduction=reduction,
|
||||
name='binarycrossentropy',
|
||||
name='strongconvexbinarycrossentropy',
|
||||
from_logits=from_logits,
|
||||
label_smoothing=label_smoothing,
|
||||
)
|
||||
|
@ -313,280 +319,3 @@ class StrongConvexBinaryCrossentropy(
|
|||
return L1L2(l2=self.reg_lambda/2)
|
||||
|
||||
|
||||
# class StrongConvexSparseCategoricalCrossentropy(
|
||||
# losses.CategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexSparseCategoricalCrossentropy, self).__init__(
|
||||
# reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
||||
#
|
||||
# class StrongConvexSparseCategoricalCrossentropy(
|
||||
# losses.SparseCategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of SparseCategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexHuber, self).__init__(reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
||||
#
|
||||
#
|
||||
# class StrongConvexCategoricalCrossentropy(
|
||||
# losses.CategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexHuber, self).__init__(reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for loss.py"""
|
||||
"""Unit testing for losses.py"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -22,9 +22,9 @@ from tensorflow.python.keras import keras_parameterized
|
|||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from absl.testing import parameterized
|
||||
from privacy.bolton.loss import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolton.loss import StrongConvexHuber
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton.losses import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolton.losses import StrongConvexHuber
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
|
||||
|
||||
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||
|
@ -355,7 +355,7 @@ class HuberTests(keras_parameterized.TestCase):
|
|||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=1),
|
||||
'result': L1L2(l2=0.5),
|
||||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
|
@ -20,8 +20,8 @@ import tensorflow as tf
|
|||
from tensorflow.python.keras.models import Model
|
||||
from tensorflow.python.keras import optimizers
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton.optimizer import Bolton
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
from privacy.bolton.optimizers import Bolton
|
||||
|
||||
|
||||
class BoltonModel(Model):
|
||||
|
@ -142,7 +142,9 @@ class BoltonModel(Model):
|
|||
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
class_weight_ = self.calculate_class_weights(class_weight)
|
||||
else:
|
||||
class_weight_ = class_weight
|
||||
if n_samples is not None:
|
||||
data_size = n_samples
|
||||
elif hasattr(x, 'shape'):
|
||||
|
@ -160,10 +162,13 @@ class BoltonModel(Model):
|
|||
if batch_size_ is None:
|
||||
raise ValueError('batch_size: {0} is an '
|
||||
'invalid value'.format(batch_size_))
|
||||
if data_size is None:
|
||||
raise ValueError('Could not infer the number of samples. Please pass '
|
||||
'this in using n_samples.')
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight,
|
||||
class_weight_,
|
||||
data_size,
|
||||
self.n_outputs,
|
||||
batch_size_,
|
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for model.py"""
|
||||
"""Unit testing for models.py"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -25,9 +25,9 @@ from tensorflow.python.keras import losses
|
|||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from absl.testing import parameterized
|
||||
from privacy.bolton import model
|
||||
from privacy.bolton.optimizer import Bolton
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton import models
|
||||
from privacy.bolton.optimizers import Bolton
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
|
||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||
"""Test loss function for testing Bolton model"""
|
||||
|
@ -130,8 +130,8 @@ class InitTests(keras_parameterized.TestCase):
|
|||
n_outputs: number of output neurons
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
clf = model.BoltonModel(n_outputs)
|
||||
self.assertIsInstance(clf, model.BoltonModel)
|
||||
clf = models.BoltonModel(n_outputs)
|
||||
self.assertIsInstance(clf, models.BoltonModel)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid n_outputs',
|
||||
|
@ -146,7 +146,7 @@ class InitTests(keras_parameterized.TestCase):
|
|||
"""
|
||||
# test invalid domains for each variable, especially noise
|
||||
with self.assertRaises(ValueError):
|
||||
model.BoltonModel(n_outputs)
|
||||
models.BoltonModel(n_outputs)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'string compile',
|
||||
|
@ -170,7 +170,7 @@ class InitTests(keras_parameterized.TestCase):
|
|||
"""
|
||||
# test compilation of valid tf.optimizer and tf.loss
|
||||
with self.cached_session():
|
||||
clf = model.BoltonModel(n_outputs)
|
||||
clf = models.BoltonModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
self.assertEqual(clf.loss, loss)
|
||||
|
||||
|
@ -197,7 +197,7 @@ class InitTests(keras_parameterized.TestCase):
|
|||
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
||||
with self.cached_session():
|
||||
with self.assertRaises((ValueError, AttributeError)):
|
||||
clf = model.BoltonModel(n_outputs)
|
||||
clf = models.BoltonModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
|
||||
|
||||
|
@ -261,7 +261,7 @@ def _do_fit(n_samples,
|
|||
|
||||
Returns: BoltonModel instsance
|
||||
"""
|
||||
clf = model.BoltonModel(n_outputs)
|
||||
clf = models.BoltonModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
if generator:
|
||||
x = _cat_dataset(
|
||||
|
@ -355,7 +355,7 @@ class FitTests(keras_parameterized.TestCase):
|
|||
input_dim = 5
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
clf = model.BoltonModel(n_classes)
|
||||
clf = models.BoltonModel(n_classes)
|
||||
clf.compile(optimizer, loss)
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
|
@ -441,7 +441,7 @@ class FitTests(keras_parameterized.TestCase):
|
|||
num_classes: number of outputs neurons
|
||||
result: expected result
|
||||
"""
|
||||
clf = model.BoltonModel(1, 1)
|
||||
clf = models.BoltonModel(1, 1)
|
||||
expected = clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
num_classes
|
||||
|
@ -508,7 +508,7 @@ class FitTests(keras_parameterized.TestCase):
|
|||
num_classes: number of outputs neurons
|
||||
result: expected result
|
||||
"""
|
||||
clf = model.BoltonModel(1, 1)
|
||||
clf = models.BoltonModel(1, 1)
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
|
@ -21,7 +21,7 @@ import tensorflow as tf
|
|||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python import ops as _ops
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
|
||||
_accepted_distributions = ['laplace'] # implemented distributions for noising
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for optimizer.py"""
|
||||
"""Unit testing for optimizers.py"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -29,8 +29,8 @@ from tensorflow.python.framework import ops as _ops
|
|||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python import ops as _ops
|
||||
from absl.testing import parameterized
|
||||
from privacy.bolton.loss import StrongConvexMixin
|
||||
from privacy.bolton import optimizer as opt
|
||||
from privacy.bolton.losses import StrongConvexMixin
|
||||
from privacy.bolton import optimizers as opt
|
||||
|
||||
|
||||
|
Loading…
Reference in a new issue