Modifies Privacy Report metadata and adds an epoch chart.

PiperOrigin-RevId: 331326000
This commit is contained in:
David Marn 2020-09-12 09:11:27 -07:00 committed by A. Unique TensorFlower
parent f44b63eb78
commit fc38e3f733
5 changed files with 217 additions and 31 deletions

View file

@ -434,6 +434,9 @@ class PrivacyReportMetadata:
loss_train: float = None
loss_test: float = None
model_variant_label: str = 'Default model variant'
epoch_num: int = None
@dataclass
class AttackResults:
@ -466,8 +469,8 @@ class AttackResults:
'slice feature': slice_features,
'slice value': slice_values,
'attack type': attack_types,
'attack advantage': advantages,
'roc auc': aucs
'Attacker advantage': advantages,
'AUC': aucs
})
return df

View file

@ -305,8 +305,8 @@ class AttackResultsTest(absltest.TestCase):
'slice feature': ['correctly_classfied', 'entire_dataset'],
'slice value': ['True', ''],
'attack type': ['threshold', 'threshold'],
'attack advantage': [1.0, 0.0],
'roc auc': [1.0, 0.5]
'Attacker advantage': [1.0, 0.0],
'AUC': [1.0, 0.5]
})
self.assertTrue(df.equals(df_expected))

View file

@ -35,6 +35,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
PrivacyReportMetadata
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
import tensorflow_privacy.privacy.membership_inference_attack.plotting as plotting
import tensorflow_privacy.privacy.membership_inference_attack.privacy_report as privacy_report
def generate_random_cluster(center, scale, num_points):
@ -96,16 +97,6 @@ model = keras.models.Sequential([
])
model.compile(
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
model.fit(
training_features,
to_categorical(training_labels, num_clusters),
validation_data=(test_features, to_categorical(test_labels, num_clusters)),
batch_size=64,
epochs=2,
shuffle=True)
training_pred = model.predict(training_features)
test_pred = model.predict(test_features)
def crossentropy(true_labels, predictions):
@ -115,24 +106,49 @@ def crossentropy(true_labels, predictions):
keras.backend.variable(predictions)))
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
accuracy_train=metrics.accuracy_score(training_labels,
np.argmax(training_pred, axis=1)),
accuracy_test=metrics.accuracy_score(test_labels,
np.argmax(test_pred, axis=1)))
epoch_results = []
attack_results = mia.run_attacks(
AttackInputData(
labels_train=training_labels,
labels_test=test_labels,
probs_train=training_pred,
probs_test=test_pred,
loss_train=crossentropy(training_labels, training_pred),
loss_test=crossentropy(test_labels, test_pred)),
SlicingSpec(entire_dataset=True, by_class=True),
attack_types=(AttackType.THRESHOLD_ATTACK, AttackType.LOGISTIC_REGRESSION),
privacy_report_metadata=None)
# Incrementally train the model and store privacy risk metrics every 10 epochs.
for i in range(1, 6):
model.fit(
training_features,
to_categorical(training_labels, num_clusters),
validation_data=(test_features, to_categorical(test_labels,
num_clusters)),
batch_size=64,
epochs=2,
shuffle=True)
training_pred = model.predict(training_features)
test_pred = model.predict(test_features)
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
accuracy_train=metrics.accuracy_score(training_labels,
np.argmax(training_pred, axis=1)),
accuracy_test=metrics.accuracy_score(test_labels,
np.argmax(test_pred, axis=1)),
epoch_num=2 * i,
model_variant_label="default")
attack_results = mia.run_attacks(
AttackInputData(
labels_train=training_labels,
labels_test=test_labels,
probs_train=training_pred,
probs_test=test_pred,
loss_train=crossentropy(training_labels, training_pred),
loss_test=crossentropy(test_labels, test_pred)),
SlicingSpec(entire_dataset=True, by_class=True),
attack_types=(AttackType.THRESHOLD_ATTACK,
AttackType.LOGISTIC_REGRESSION),
privacy_report_metadata=privacy_report_metadata)
epoch_results.append(attack_results)
# Generate privacy report
epoch_figure = privacy_report.plot_by_epochs(epoch_results,
["Attacker advantage", "AUC"])
epoch_figure.show()
# Example of saving the results to the file and loading them back.
with tempfile.TemporaryDirectory() as tmpdirname:

View file

@ -0,0 +1,63 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Plotting code for ML Privacy Reports."""
from typing import Iterable
import matplotlib.pyplot as plt
import pandas as pd
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
def plot_by_epochs(results: Iterable[AttackResults],
privacy_metrics: Iterable[str]) -> plt.Figure:
"""Plots privacy vulnerabilities by epochs."""
_validate_results(results)
all_results_df = None
for attack_results in results:
attack_results_df = attack_results.calculate_pd_dataframe()
attack_results_df = attack_results_df.loc[attack_results_df['slice feature']
== 'entire_dataset']
attack_results_df.insert(0, 'Epoch',
attack_results.privacy_report_metadata.epoch_num)
if all_results_df is None:
all_results_df = attack_results_df
else:
all_results_df = pd.concat([all_results_df, attack_results_df],
ignore_index=True)
fig, axes = plt.subplots(1, len(privacy_metrics))
if len(privacy_metrics) == 1:
axes = (axes,)
for i, privacy_metric in enumerate(privacy_metrics):
attack_types = all_results_df['attack type'].unique()
for attack_type in attack_types:
axes[i].plot(
all_results_df.loc[all_results_df['attack type'] == attack_type]
['Epoch'], all_results_df.loc[all_results_df['attack type'] ==
attack_type][privacy_metric])
axes[i].legend(attack_types)
axes[i].set_xlabel('Epoch')
axes[i].set_title('%s for Entire dataset' % privacy_metric)
return fig
def _validate_results(results: Iterable[AttackResults]):
for attack_results in results:
if not attack_results or not attack_results.privacy_report_metadata:
raise ValueError('Privacy metadata is not defined.')
if not attack_results.privacy_report_metadata.epoch_num:
raise ValueError('epoch_num in metadata is not defined.')

View file

@ -0,0 +1,104 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for tensorflow_privacy.privacy.membership_inference_attack.privacy_report."""
from absl.testing import absltest
import numpy as np
from tensorflow_privacy.privacy.membership_inference_attack import privacy_report
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import \
PrivacyReportMetadata
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import RocCurve
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SingleAttackResult
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SingleSliceSpec
class PrivacyReportTest(absltest.TestCase):
def __init__(self, *args, **kwargs):
super(PrivacyReportTest, self).__init__(*args, **kwargs)
# Classifier that achieves an AUC of 0.5.
self.imperfect_classifier_result = SingleAttackResult(
slice_spec=SingleSliceSpec(None),
attack_type=AttackType.THRESHOLD_ATTACK,
roc_curve=RocCurve(
tpr=np.array([0.0, 0.5, 1.0]),
fpr=np.array([0.0, 0.5, 1.0]),
thresholds=np.array([0, 1, 2])))
# Classifier that achieves an AUC of 1.0.
self.perfect_classifier_result = SingleAttackResult(
slice_spec=SingleSliceSpec(None),
attack_type=AttackType.THRESHOLD_ATTACK,
roc_curve=RocCurve(
tpr=np.array([0.0, 1.0, 1.0]),
fpr=np.array([1.0, 1.0, 0.0]),
thresholds=np.array([0, 1, 2])))
self.results_epoch_10 = AttackResults(
single_attack_results=[self.imperfect_classifier_result],
privacy_report_metadata=PrivacyReportMetadata(
accuracy_train=0.4,
accuracy_test=0.3,
epoch_num=10,
model_variant_label='default'))
self.results_epoch_15 = AttackResults(
single_attack_results=[self.perfect_classifier_result],
privacy_report_metadata=PrivacyReportMetadata(
accuracy_train=0.5,
accuracy_test=0.4,
epoch_num=15,
model_variant_label='default'))
self.attack_results_no_metadata = AttackResults(
single_attack_results=[self.perfect_classifier_result])
def test_plot_by_epochs_no_metadata(self):
# Raise error if metadata is missing
self.assertRaises(ValueError, privacy_report.plot_by_epochs,
(self.attack_results_no_metadata,), ['AUC'])
def test_single_metric_plot_by_epochs(self):
fig = privacy_report.plot_by_epochs(
(self.results_epoch_10, self.results_epoch_15), ['AUC'])
# extract data from figure.
auc_data = fig.gca().lines[0].get_data()
# X axis lists epoch values
np.testing.assert_array_equal(auc_data[0], [10, 15])
# Y axis lists AUC values
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
def test_multiple_metrics_plot_by_epochs(self):
fig = privacy_report.plot_by_epochs(
(self.results_epoch_10, self.results_epoch_15),
['AUC', 'Attacker advantage'])
# extract data from figure.
auc_data = fig.axes[0].lines[0].get_data()
attacker_advantage_data = fig.axes[1].lines[0].get_data()
# X axis lists epoch values
np.testing.assert_array_equal(auc_data[0], [10, 15])
np.testing.assert_array_equal(attacker_advantage_data[0], [10, 15])
# Y axis lists privacy metrics
np.testing.assert_array_equal(auc_data[1], [0.5, 1.0])
np.testing.assert_array_equal(attacker_advantage_data[1], [0, 1.0])
if __name__ == '__main__':
absltest.main()