Finish migration of mnist_lr_tutorial to use differential_privacy library.
PiperOrigin-RevId: 453258715
This commit is contained in:
parent
97f5c2fdfb
commit
fca208e514
1 changed files with 1 additions and 2 deletions
|
@ -30,7 +30,6 @@ import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow import estimator as tf_estimator
|
from tensorflow import estimator as tf_estimator
|
||||||
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
|
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
|
||||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
|
||||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||||
from com_google_differential_py.python.dp_accounting import dp_event
|
from com_google_differential_py.python.dp_accounting import dp_event
|
||||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||||
|
@ -167,7 +166,7 @@ def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
|
||||||
# Using RDP accountant to compute eps. Doing computation analytically is
|
# Using RDP accountant to compute eps. Doing computation analytically is
|
||||||
# an option.
|
# an option.
|
||||||
rdp = [order * coef for order in orders]
|
rdp = [order * coef for order in orders]
|
||||||
eps, _, _ = get_privacy_spent(orders, rdp, target_delta=delta)
|
eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, delta)
|
||||||
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta))
|
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta))
|
||||||
|
|
||||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||||
|
|
Loading…
Reference in a new issue